Menu

Hemispherical ends

Hemispherical end D i e n
Hemispherical end

Values for calculation

$T$ $\mathrm{°C}$
$T_{test}$ $\mathrm{°C}$
$P$ $\mathrm{MPa}$
$P_{test}$ $\mathrm{MPa}$
$D_i$ $\mathrm{mm}$
$z$
$R_{p0.2/T}$ $\mathrm{MPa}$
$R_{p0.2/T_{test}}$ $\mathrm{MPa}$
$R_{p1.0/T}$ $\mathrm{MPa}$
$R_{p1.0/T_{test}}$ $\mathrm{MPa}$
$R_{m/20}$ $\mathrm{MPa}$
$R_{m/T}$ $\mathrm{MPa}$
$R_{m/T_{test}}$ $\mathrm{MPa}$

Calculation

Maximum value of the nominal design stress for normal operating load cases

- Cast steels$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$- Austenitic steels, A ≥ 35%$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$- Austenitic steels, 30% ≤ A < 35%$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$- Steels other than austenitic, A ≤ 30%$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Maximum value of the nominal design stress for testing load cases

- Cast steels$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}$$- Austenitic steels, A ≥ 35%$$f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)$$- Austenitic steels, 30% ≤ A < 35%$$f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}$$- Steels other than austenitic, A ≤ 30%$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}$$

Required thickness

$$e=\cfrac{P\cdot D_i}{2\cdot f_d\cdot z-P}$$

Required thickness for testing load cases

$$e_{test}=\cfrac{P_{test}\cdot D_i}{2\cdot f_{test}-P_{test}}$$

Requirements

$$e/\left(D_i+2\cdot e\right) \le 0.16$$$$e_{test}/\left(D_i+2\cdot e_{test}\right) \le 0.16$$