Menu

Nozzles which encroach into the knuckle region for Korbbogen type end

Torispherical end h i D i e n R r D e
Torispherical end

Values for calculation

$ T $ $ \mathrm{°C} $
$ T_{test} $ $ \mathrm{°C} $
$ P $ $ \mathrm{MPa} $
$ P_{test} $ $ \mathrm{MPa} $
$ D_i $ $ \mathrm{mm} $
$ D_e $ $ \mathrm{mm} $
$ d_i $ $ \mathrm{mm} $
$ z $
$ R_{p0.2/T} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{test}} $ $ \mathrm{MPa} $
$ R_{p1.0/T} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{test}} $ $ \mathrm{MPa} $
$ R_{m/20} $ $ \mathrm{MPa} $
$ R_{m/T} $ $ \mathrm{MPa} $
$ R_{m/T_{test}} $ $ \mathrm{MPa} $

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Maximum allowed value of the nominal design stress for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}$$
$\text{else}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}$$

Design stress for buckling formula for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{production }$$\text{according }$$\text{to }$$\text{temperature}=\text{cold}\wedge\text{seamless }$$\text{product}=\text{yes}$
$$f_b=\cfrac{1.6\cdot R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_b=\cfrac{R_{p0.2/T}}{1.5}$$

Design stress for buckling formula for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{production }$$\text{according }$$\text{to }$$\text{temperature}=\text{cold}\wedge\text{seamless }$$\text{product}=\text{yes}$
$$f_{b_{test}}=\cfrac{1.6\cdot R_{p1.0/T}}{1.05}$$
$\text{else}$
$$f_{b_{test}}=\cfrac{R_{p0.2/T}}{1.05}$$

Inside radius of curvature of a knuckle

$$r=0.154\cdot D_e$$

Inside spherical radius of central part of torispherical end

$$R=0.8\cdot D_e$$

Required thickness of end to limit membrane stress in central part

$$e_s=\cfrac{P\cdot R}{2\cdot f_d\cdot z-0.5\cdot P}$$

Required thickness of end to limit membrane stress in central part for testing load cases

$$e_{s_{test}}=\cfrac{P_{test}\cdot R}{2\cdot f_{test}-0.5\cdot P_{test}}$$

Required thickness of knuckle to avoid plastic buckling

$$e_b=\left(0.75\cdot R+0.2\cdot D_i\right)\cdot\left[\cfrac{P}{111\cdot f_b}\cdot\left(\cfrac{D_i}{r}\right)^{0.825}\right]^\left(\cfrac{1}{1.5}\right)$$

Required thickness of knuckle to avoid plastic buckling for testing load cases

$$e_{b_{test}}=\left(0.75\cdot R+0.2\cdot D_i\right)\cdot\left[\cfrac{P_{test}}{111\cdot f_{b_{test}}}\cdot\left(\cfrac{D_i}{r}\right)^{0.825}\right]^\left(\cfrac{1}{1.5}\right)$$

Parameter $ Y $

$$Y=\min\left(e/R, 0.04\right)$$

Parameter $ Z $

$$Z=\log_{10}\left(1/Y\right)$$

Ratio of knuckle inside radius to shell inside diameter

$$X=r/D_i$$

Parameter $ N $

$$N=1.006-\cfrac{1}{6.2+\left(90\cdot Y\right)^4}$$

Factor $ β_{0.06} $

$$β_{0.06}=N\cdot\left(-0.3635\cdot Z^3+2.2124\cdot Z^2-3.2937\cdot Z+1.8873\right)$$

Factor $ β_{0.1} $

$$β_{0.1}=N\cdot\left(-0.1833\cdot Z^3+1.0383\cdot Z^2-1.2943\cdot Z+0.837\right)$$

Factor $ β_{0.2} $

$$β_{0.2}=\max\left\{0.95\cdot\left(0.56-1.94\cdot Y-82.5\cdot Y^2\right), 0.5\right\}$$

Factor $ β $

$\text{if }\ X= 0.06$
$$β=β_{0.06}$$
$\text{else if }\ 0.06 < X < 0.1$
$$β=25\cdot\left\{\left(0.1-X\right)\cdot β_{0.06}+\left(X-0.06\right)\cdot β_{0.1}\right\}$$
$\text{else if }\ X= 0.1$
$$β=β_{0.1}$$
$\text{else if }\ 0.1 < X < 0.2$
$$β=10\cdot\left\{\left(0.2-X\right)\cdot β_{0.1}+\left(X-0.1\right)\cdot β_{0.2}\right\}$$
$\text{else}$
$$β=β_{0.2}$$

Parameter $ V $

$$V=\log_{10}{\left(1000\cdot\cfrac{P}{f_d}\right)}$$

Parameter $ V_{test} $

$$V_{test}=\log_{10}{\left(1000\cdot\cfrac{P_{test}}{f_{test}}\right)}$$

Parameter $ A $

$$A=0.54+0.41\cdot V-0.044\cdot V^3$$

Parameter $ A_{test} $

$$A_{test}=0.54+0.41\cdot V_{test}-0.044\cdot V_{test}^3$$

Parameter $ B $

$$B=7.77-4.53\cdot V+0.744\cdot V^2$$

Parameter $ B_{test} $

$$B_{test}=7.77-4.53\cdot V_{test}+0.744\cdot V_{test}^2$$

Weakening factor due to presence of nozzle

$$β_K=\max\left(A+B\cdot\cfrac{d_i}{D_e}, 1+0.5\cdot B\cdot\cfrac{d_i}{D_e}\right)$$

Weakening factor due to presence of nozzle for testing load cases

$$β_{K_{test}}=\max\left(A_{test}+B_{test}\cdot\cfrac{d_i}{D_e}, 1+0.5\cdot B_{test}\cdot\cfrac{d_i}{D_e}\right)$$

Required thickness of knuckle to avoid axisymmetric yielding

$$e_y=\cfrac{β\cdot P\cdot β_K\cdot\left(0.75\cdot R+0.2\cdot D_i\right)}{f_d}$$

Required thickness of knuckle to avoid axisymmetric yielding for testing load cases

$$e_{y_{test}}=\cfrac{β\cdot P_{test}\cdot β_{K_{test}}\cdot\left(0.75\cdot R+0.2\cdot D_i\right)}{f_{test}}$$

Required thickness

$$e=\max\left(e_s, e_{s_{test}}, e_y, e_{y_{test}}, e_b, e_{b_{test}}\right)$$

Inside height of end measured from the tangent line

$$h_i=R-\sqrt{\left(R-D_i/2\right)\cdot\left(R+D_i/2-2\cdot r\right)}$$

Requirements

$$ d_i/D_e \le 0.6 $$
On this page