Menu

Assembly using a torque wrench

Gasket details b Gt b Gt b Gt b Gt d G 1 d G 1 d G 1 d G 1 d G 1 d G 1 d G 2 d G 2 d G 2 d G 2 d G 2 d G 2 d g 0 d g 0 e G e G e G e G e G e G b Gt /2 b Gt /2 d Gt b Gt /2 b Gt /2 d Gt b Gt /2 b Gt /2 d Gt d Gt d Gt d Gt r 2 r 2 φ G b Ge /2 b Ge /2 φ G r 2 r 2 φ G a) b) c) f) e) d)
Gasket details
Bolt details a) Haxagon headed bolt b) Stud bolt c) Waisted stud d) view on 'Z' d B 0 l B d B 0 d B 0 l B l B d Bs d Bs l s l s Z Z Z d B 3 d B 2 d B 0
Bolt details

Values for calculation

$ d_4 $ $ \mathrm{mm} $
$ \tilde{d}_4 $ $ \mathrm{mm} $
$ d_0 $ $ \mathrm{mm} $
$ \tilde{d}_0 $ $ \mathrm{mm} $
$ d_3 $ $ \mathrm{mm} $
$ n_B $
$ d_5 $ $ \mathrm{mm} $
$ \tilde{d}_5 $ $ \mathrm{mm} $
$ e_{Ft} $ $ \mathrm{mm} $
$ \tilde{e}_{Ft} $ $ \mathrm{mm} $
$ d_9 $ $ \mathrm{mm} $
$ e_0 $ $ \mathrm{mm} $
$ d_8 $ $ \mathrm{mm} $
$ d_6 $ $ \mathrm{mm} $
$ b_0 $ $ \mathrm{mm} $
$ \tilde{d}_9 $ $ \mathrm{mm} $
$ \tilde{e}_0 $ $ \mathrm{mm} $
$ \tilde{d}_8 $ $ \mathrm{mm} $
$ \tilde{d}_6 $ $ \mathrm{mm} $
$ \tilde{b}_0 $ $ \mathrm{mm} $
$ A_F $ $ \mathrm{mm^2} $
$ \tilde{A}_F $ $ \mathrm{mm^2} $
$ A_L $ $ \mathrm{mm^2} $
$ \tilde{A}_L $ $ \mathrm{mm^2} $
$ E_{F0} $ $ \mathrm{MPa} $
$ \tilde{E}_{F0} $ $ \mathrm{MPa} $
$ E_{F1} $ $ \mathrm{MPa} $
$ \tilde{E}_{F1} $ $ \mathrm{MPa} $
$ α_{F1} $ $ \mathrm{K^{-1}} $
$ T_{F1} $ $ \mathrm{°C} $
$ \tilde{α}_{F1} $ $ \mathrm{K^{-1}} $
$ \tilde{T}_{F1} $ $ \mathrm{°C} $
$ E_{L0} $ $ \mathrm{MPa} $
$ E_{L1} $ $ \mathrm{MPa} $
$ α_{L1} $ $ \mathrm{K^{-1}} $
$ T_{L1} $ $ \mathrm{°C} $
$ \tilde{E}_{L0} $ $ \mathrm{MPa} $
$ \tilde{E}_{L1} $ $ \mathrm{MPa} $
$ \tilde{α}_{L1} $ $ \mathrm{K^{-1}} $
$ \tilde{T}_{L1} $ $ \mathrm{°C} $
$ d_{G1} $ $ \mathrm{mm} $
$ d_{G2} $ $ \mathrm{mm} $
$ e_G $ $ \mathrm{mm} $
$ d_{G0} $ $ \mathrm{mm} $
$ r_2 $ $ \mathrm{mm} $
$ φ_G $ $ \mathrm{°} $
$ b_{Ge} $ $ \mathrm{mm} $
$ r_2 $ $ \mathrm{mm} $
$ φ_G $ $ \mathrm{°} $
$ Q_{0,min} $ $ \mathrm{MPa} $
$ Q_{max} $ $ \mathrm{MPa} $
$ g_{C0} $
$ g_{C1} $
$ α_{G1} $ $ \mathrm{K^{-1}} $
$ T_{G1} $ $ \mathrm{°C} $
$ m_1 $
$ E_0 $ $ \mathrm{MPa} $
$ K_1 $
$ l_B $ $ \mathrm{mm} $
$ l_s $ $ \mathrm{mm} $
$ d_{B0} $ $ \mathrm{mm} $
$ d_{Be} $ $ \mathrm{mm} $
$ d_{Bs} $ $ \mathrm{mm} $
$ E_{B0} $ $ \mathrm{MPa} $
$ E_{B1} $ $ \mathrm{MPa} $
$ α_{B1} $ $ \mathrm{K^{-1}} $
$ T_{B1} $ $ \mathrm{°C} $
$ d_n $ $ \mathrm{mm} $
$ d_t $ $ \mathrm{mm} $
$ μ_n $
$ μ_t $
$ p_t $ $ \mathrm{mm} $
$ α $ $ \mathrm{°} $
$ M_{A0} $ $ \mathrm{Nmm} $
$ F_{A0} $ $ \mathrm{N} $
$ F_{G0} $ $ \mathrm{N} $
$ F_{B0,nom} $ $ \mathrm{N} $
$ M_{t,nom} $ $ \mathrm{Nmm} $
$ T_0 $ $ \mathrm{°C} $
$ P_1 $ $ \mathrm{MPa} $
$ M_{A1} $ $ \mathrm{Nmm} $
$ F_{A1} $ $ \mathrm{N} $

Calculation

Pitch between bolts (first flange of the joint)

$$p_B=π\cdot d_3/n_B$$

Pitch between bolts (second flange of the joint)

$$\tilde{p}_B=p_B$$

Effective bolt circle diameter (first flange of the joint)

$$d_{3e}=d_3\cdot\left(1-2/n_B^2\right)$$

Effective bolt circle diameter (second flange of the joint)

$$\tilde{d}_{3e}=d_{3e}$$

Effective diameters of bolt holes (first flange of the joint)

$$d_{5e}=d_5\cdot\sqrt{d_5/p_B}$$

Effective diameters of bolt holes (second flange of the joint)

$$\tilde{d}_{5e}=\tilde{d}_5\cdot\sqrt{\tilde{d}_5/\tilde{p}_B}$$

Effective width of flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$b_F=\left(d_8-d_0\right)/2$$
$\text{else}$
$$b_F=\left(d_4-d_0\right)/2-d_{5e}$$

Effective width of flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{b}_F=\left(\tilde{d}_8-\tilde{d}_0\right)/2$$
$\text{else}$
$$\tilde{b}_F=\left(\tilde{d}_4-\tilde{d}_0\right)/2-\tilde{d}_{5e}$$

Average diameters of a part or section flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_F=\left(d_8+d_0\right)/2$$
$\text{else}$
$$d_F=\left(d_4+d_0\right)/2$$

Average diameters of a part or section flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_F=\left(\tilde{d}_8+\tilde{d}_0\right)/2$$
$\text{else}$
$$\tilde{d}_F=\left(\tilde{d}_4+\tilde{d}_0\right)/2$$

Effective axial thickness of flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$e_F=2\cdot A_F/\left(d_8-d_0\right)$$
$\text{else}$
$$e_F=2\cdot A_F/\left(d_4-d_0\right)$$

Effective axial thickness of flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{e}_F=2\cdot \tilde{A}_F/\left(\tilde{d}_8-\tilde{d}_0\right)$$
$\text{else}$
$$\tilde{e}_F=2\cdot \tilde{A}_F/\left(\tilde{d}_4-\tilde{d}_0\right)$$

Effective width of loose flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$b_L=\left(d_4-d_6\right)/2-d_{5e}$$
$\text{else}$
$$b_L=0$$

Effective width of loose flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{b}_L=\left(\tilde{d}_4-\tilde{d}_6\right)/2-\tilde{d}_{5e}$$
$\text{else}$
$$\tilde{b}_L=0$$

Average diameters of a part or section loose flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_L=\left(d_4+d_6\right)/2$$
$\text{else}$
$$d_L=0$$

Average diameters of a part or section loose flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_L=\left(\tilde{d}_4+\tilde{d}_6\right)/2$$
$\text{else}$
$$\tilde{d}_L=0$$

Effective axial thickness of loose flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$e_L=2\cdot A_L/\left(d_4-d_6\right)$$
$\text{else}$
$$e_L=0$$

Effective axial thickness of loose flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{e}_L=2\cdot \tilde{A}_L/\left(\tilde{d}_4-\tilde{d}_6\right)$$
$\text{else}$
$$\tilde{e}_L=0$$

Intermediate working variable $ β $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}\neq \text{Blank flange}\wedge\text{connected }$$\text{shell }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Tapered hub}$
$$β=e_2/e_1$$
$\text{else}$
$$β=0$$

Intermediate working variable $ \tilde{β} $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}\neq \text{Blank flange}\wedge\text{connected }$$\text{shell }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Tapered hub}$
$$\tilde{β}=\tilde{e}_2/\tilde{e}_1$$
$\text{else}$
$$\tilde{β}=0$$

Wall thickness of the equivalent cylinder for load limit and flexibility calculations respectively (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$e_E=0$$
$\text{else if }\ \text{connected }$$\text{shell }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{No hub}$
$$e_E=e_S$$
$\text{else}$
$$e_E=e_1\cdot\left\{1+\cfrac{\left(β-1\right)\cdot l_H}{\left(β/3\right)\cdot\sqrt{d_1\cdot e_1}+l_H}\right\}$$

Wall thickness of the equivalent cylinder for load limit and flexibility calculations respectively (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{e}_E=0$$
$\text{else if }\ \text{connected }$$\text{shell }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{No hub}$
$$\tilde{e}_E=\tilde{e}_S$$
$\text{else}$
$$\tilde{e}_E=\tilde{e}_1\cdot\left\{1+\cfrac{\left(\tilde{β}-1\right)\cdot \tilde{l}_H}{\left(\tilde{β}/3\right)\cdot\sqrt{\tilde{d}_1\cdot \tilde{e}_1}+\tilde{l}_H}\right\}$$

Average diameters of a equivalent cylinder (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$d_E=d_0$$
$\text{else if }\ \text{connected }$$\text{shell }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{No hub}$
$$d_E=d_S$$
$\text{else}$
$$d_E=\left\{\min\left(d_1-e_1+e_E, d_2+e_2-e_E\right)+\max\left(d_1+e_1-e_E, d_2-e_2+e_E\right)\right\}/2$$

Average diameters of a equivalent cylinder (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{d}_E=\tilde{d}_0$$
$\text{else if }\ \text{connected }$$\text{shell }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{No hub}$
$$\tilde{d}_E=\tilde{d}_S$$
$\text{else}$
$$\tilde{d}_E=\left\{\min\left(\tilde{d}_1-\tilde{e}_1+\tilde{e}_E, \tilde{d}_2+\tilde{e}_2-\tilde{e}_E\right)+\max\left(\tilde{d}_1+\tilde{e}_1-\tilde{e}_E, \tilde{d}_2-\tilde{e}_2+\tilde{e}_E\right)\right\}/2$$

Lever arm corrections pressure (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$h_P=\left[\left(d_{Ge}-d_E\right)^2\cdot\left(2\cdot d_{Ge}+d_E\right)/6\right]/d_{Ge}^2$$
$\text{else}$
$$h_P=\left\{\left(d_{Ge}-d_E\right)^2\cdot\cfrac{2\cdot d_{Ge}+d_E}{6}-\left(e_S\cdot\cos{φ_S}\right)^2\cdot\left[\cfrac{d_E}{2}-\cfrac{1}{3}\cdot\left(e_S\cdot\cos{φ_S}\right)\right]+2\cdot e_P^2\cdot d_F\right\}\cdot\cfrac{1}{d_{Ge}^2}$$

Lever arm corrections pressure (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{h}_P=\left[\left(d_{Ge}-\tilde{d}_E\right)^2\cdot\left(2\cdot d_{Ge}+\tilde{d}_E\right)/6\right]/d_{Ge}^2$$
$\text{else}$
$$\tilde{h}_P=\left\{\left(d_{Ge}-\tilde{d}_E\right)^2\cdot\cfrac{2\cdot d_{Ge}+\tilde{d}_E}{6}-\left(\tilde{e}_S\cdot\cos{\tilde{φ}_S}\right)^2\cdot\left[\cfrac{\tilde{d}_E}{2}-\cfrac{1}{3}\cdot\left(\tilde{e}_S\cdot\cos{\tilde{φ}_S}\right)\right]+2\cdot \tilde{e}_P^2\cdot \tilde{d}_F\right\}\cdot\cfrac{1}{d_{Ge}^2}$$

Minimum diameter of the position of the reaction between a loose flange and a stub or collar (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_{7,min}=d_6+2\cdot b_0$$
$\text{else}$
$$d_{7,min}=0$$

Minimum diameter of the position of the reaction between a loose flange and a stub or collar (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_{7,min}=\tilde{d}_6+2\cdot \tilde{b}_0$$
$\text{else}$
$$\tilde{d}_{7,min}=0$$

Maximum diameter of the position of the reaction between a loose flange and a stub or collar (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_{7,max}=d_8$$
$\text{else}$
$$d_{7,max}=0$$

Maximum diameter of the position of the reaction between a loose flange and a stub or collar (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_{7,max}=\tilde{d}_8$$
$\text{else}$
$$\tilde{d}_{7,max}=0$$

Diameter of the position of the reaction between a loose flange and a stub or collar (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_7=d_{70}$$
$\text{else}$
$$d_7=0$$

$$d_{7,min}\le d_7\le d_{7,max}$$

Diameter of the position of the reaction between a loose flange and a stub or collar (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_7=\tilde{d}_{70}$$
$\text{else}$
$$\tilde{d}_7=0$$

$$\tilde{d}_{7,min}\le \tilde{d}_7\le \tilde{d}_{7,max}$$

Lever arm gasket (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$h_G=\left(d_7-d_{Ge}\right)/2$$
$\text{else}$
$$h_G=\left(d_{3e}-d_{Ge}\right)/2$$

Lever arm gasket (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{h}_G=\left(\tilde{d}_7-d_{Ge}\right)/2$$
$\text{else}$
$$\tilde{h}_G=\left(\tilde{d}_{3e}-d_{Ge}\right)/2$$

Lever arm hub (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$h_H=\left(d_7-d_E\right)/2$$
$\text{else}$
$$h_H=\left(d_{3e}-d_E\right)/2$$

Lever arm hub (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{h}_H=\left(\tilde{d}_7-d_E\right)/2$$
$\text{else}$
$$\tilde{h}_H=\left(\tilde{d}_{3e}-d_E\right)/2$$

Lever arm loose flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$h_L=\left(d_{3e}-d_7\right)/2$$
$\text{else}$
$$h_L=0$$

Lever arm loose flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{h}_L=\left(\tilde{d}_{3e}-\tilde{d}_7\right)/2$$
$\text{else}$
$$\tilde{h}_L=0$$

Intermediate working variable $ γ $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$γ=0$$
$\text{else}$
$$γ=\cfrac{e_E\cdot d_F}{b_F\cdot d_E\cdot \cos{φ_S}}$$

Intermediate working variable $ \tilde{γ} $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{γ}=0$$
$\text{else}$
$$\tilde{γ}=\cfrac{\tilde{e}_E\cdot \tilde{d}_F}{\tilde{b}_F\cdot \tilde{d}_E\cdot \cos{\tilde{φ}_S}}$$

Intermediate working variable $ ϑ $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$ϑ=0$$
$\text{else}$
$$ϑ=0.550\cdot\cos{φ_S}\cdot\cfrac{\sqrt{d_E\cdot e_E}}{e_F}$$

Intermediate working variable $ \tilde{ϑ} $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{ϑ}=0$$
$\text{else}$
$$\tilde{ϑ}=0.550\cdot\cos{\tilde{φ}_S}\cdot\cfrac{\sqrt{\tilde{d}_E\cdot \tilde{e}_E}}{\tilde{e}_F}$$

Intermediate working variable $ λ $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$λ=0$$
$\text{else}$
$$λ=1-e_P/e_F$$

Intermediate working variable $ \tilde{λ} $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{λ}=0$$
$\text{else}$
$$\tilde{λ}=1-\tilde{e}_P/\tilde{e}_F$$

Correction factor $ c_F $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$c_F=0$$
$\text{else}$
$$c_F=\cfrac{1+γ\cdot ϑ}{1+γ\cdot ϑ\cdot\left[4\cdot\left(1-3\cdot λ+3\cdot λ^2\right)+6\cdot\left(1-2\cdot λ\right)\cdot ϑ+6\cdot ϑ^2\right]+3\cdot γ^2\cdot ϑ^4}$$

Correction factor $ \tilde{c}_F $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{c}_F=0$$
$\text{else}$
$$\tilde{c}_F=\cfrac{1+\tilde{γ}\cdot \tilde{ϑ}}{1+\tilde{γ}\cdot \tilde{ϑ}\cdot\left[4\cdot\left(1-3\cdot \tilde{λ}+3\cdot \tilde{λ}^2\right)+6\cdot\left(1-2\cdot \tilde{λ}\right)\cdot \tilde{ϑ}+6\cdot \tilde{ϑ}^2\right]+3\cdot \tilde{γ}^2\cdot \tilde{ϑ}^4}$$

Diameter ratio for blank flanges (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$ρ=d_9/d_E$$
$\text{else}$
$$ρ=0$$

Diameter ratio for blank flanges (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{ρ}=\tilde{d}_9/\tilde{d}_E$$
$\text{else}$
$$\tilde{ρ}=0$$

Correction factor $ k_Q $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$k_Q=0$$
$\text{else if }\ \text{shell }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Spherical shell}$
$$k_Q=0.35/\cos{φ_S}$$
$\text{else}$
$$k_Q=0.85/\cos{φ_S}$$

Correction factor $ \tilde{k}_Q $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{k}_Q=0$$
$\text{else if }\ \text{shell }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Spherical shell}$
$$\tilde{k}_Q=0.35/\cos{\tilde{φ}_S}$$
$\text{else}$
$$\tilde{k}_Q=0.85/\cos{\tilde{φ}_S}$$

Correction factor $ k_R $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$k_R=0$$
$\text{else if }\ \text{shell }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Spherical shell}$
$$k_R=-0.65/\cos{φ_S}$$
$\text{else}$
$$k_R=-0.15/\cos{φ_S}$$

Correction factor $ \tilde{k}_R $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{k}_R=0$$
$\text{else if }\ \text{shell }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Spherical shell}$
$$\tilde{k}_R=-0.65/\cos{\tilde{φ}_S}$$
$\text{else}$
$$\tilde{k}_R=-0.15/\cos{\tilde{φ}_S}$$

Lever arm corrections shell (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$h_S=0$$
$\text{else}$
$$h_S=e_F\cdot 1.10\cdot\sqrt{\cfrac{e_E}{d_E}}\cdot\cfrac{1-2\cdot λ+ϑ}{1+γ\cdot ϑ}$$

Lever arm corrections shell (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{h}_S=0$$
$\text{else}$
$$\tilde{h}_S=\tilde{e}_F\cdot 1.10\cdot\sqrt{\cfrac{\tilde{e}_E}{\tilde{d}_E}}\cdot\cfrac{1-2\cdot \tilde{λ}+\tilde{ϑ}}{1+\tilde{γ}\cdot \tilde{ϑ}}$$

Lever arm corrections shell, modified (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$h_T=0$$
$\text{else}$
$$h_T=e_F\cdot\cfrac{1-2\cdot λ-γ\cdot ϑ^2}{1+γ\cdot ϑ}$$

Lever arm corrections shell, modified (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{h}_T=0$$
$\text{else}$
$$\tilde{h}_T=\tilde{e}_F\cdot\cfrac{1-2\cdot \tilde{λ}-\tilde{γ}\cdot \tilde{ϑ}^2}{1+\tilde{γ}\cdot \tilde{ϑ}}$$

Lever arm corrections net axial force due to pressure (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$h_Q=\cfrac{d_E\cdot\left(1-ρ^2\right)}{8}\cdot\cfrac{0.7+3.3\cdot ρ^2}{0.7+1.3\cdot ρ^2}\cdot\left(\cfrac{d_E}{d_{Ge}}\right)^2$$
$\text{else}$
$$h_Q=\left\{h_S\cdot k_Q+h_T\cdot\left(2\cdot d_F\cdot e_P/d_E^2-0.5\cdot\tan{φ_S}\right)\right\}\cdot\left(d_E/d_{Ge}\right)^2$$

Lever arm corrections net axial force due to pressure (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{h}_Q=\cfrac{\tilde{d}_E\cdot\left(1-\tilde{ρ}^2\right)}{8}\cdot\cfrac{0.7+3.3\cdot \tilde{ρ}^2}{0.7+1.3\cdot \tilde{ρ}^2}\cdot\left(\cfrac{\tilde{d}_E}{d_{Ge}}\right)^2$$
$\text{else}$
$$\tilde{h}_Q=\left\{\tilde{h}_S\cdot \tilde{k}_Q+\tilde{h}_T\cdot\left(2\cdot \tilde{d}_F\cdot \tilde{e}_P/\tilde{d}_E^2-0.5\cdot\tan{\tilde{φ}_S}\right)\right\}\cdot\left(\tilde{d}_E/d_{Ge}\right)^2$$

Lever arm corrections net axial force due to external loads (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$h_R=\cfrac{d_E\cdot\left(1-ρ^2\right)}{4\cdot\left(1+ρ^2\right)}\cdot\cfrac{0.7+3.3\cdot ρ^2}{0.7+1.3\cdot ρ^2}$$
$\text{else}$
$$h_R=h_S\cdot k_R-h_T\cdot 0.5\cdot\tan{φ_S}$$

Lever arm corrections net axial force due to external loads (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{h}_R=\cfrac{\tilde{d}_E\cdot\left(1-\tilde{ρ}^2\right)}{4\cdot\left(1+\tilde{ρ}^2\right)}\cdot\cfrac{0.7+3.3\cdot \tilde{ρ}^2}{0.7+1.3\cdot \tilde{ρ}^2}$$
$\text{else}$
$$\tilde{h}_R=\tilde{h}_S\cdot \tilde{k}_R-\tilde{h}_T\cdot 0.5\cdot\tan{\tilde{φ}_S}$$

Rotational flexibility moduli of flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$Z_F=\cfrac{3\cdot d_F}{π\cdot\left[b_F\cdot e_F^3+d_F\cdot e_0^3\cdot\left(1-ρ^2\right)/\left(1.4+2.6\cdot ρ^2\right)\right]}$$
$\text{else}$
$$Z_F=\cfrac{3\cdot d_F\cdot c_F}{π\cdot b_F\cdot e_F^3}$$

Rotational flexibility moduli of flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Blank flange}$
$$\tilde{Z}_F=\cfrac{3\cdot \tilde{d}_F}{π\cdot\left[\tilde{b}_F\cdot \tilde{e}_F^3+\tilde{d}_F\cdot \tilde{e}_0^3\cdot\left(1-\tilde{ρ}^2\right)/\left(1.4+2.6\cdot \tilde{ρ}^2\right)\right]}$$
$\text{else}$
$$\tilde{Z}_F=\cfrac{3\cdot \tilde{d}_F\cdot \tilde{c}_F}{π\cdot \tilde{b}_F\cdot \tilde{e}_F^3}$$

Rotational flexibility moduli of loose flange (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Z_L=\cfrac{3\cdot d_L}{π\cdot b_L\cdot e_L^3}$$
$\text{else}$
$$Z_L=0$$

Rotational flexibility moduli of loose flange (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{Z}_L=\cfrac{3\cdot \tilde{d}_L}{π\cdot \tilde{b}_L\cdot \tilde{e}_L^3}$$
$\text{else}$
$$\tilde{Z}_L=0$$

Bolt axial dimensions effective

$$l_e=l_B-l_s$$

Axial flexibility moduli of bolts

$$X_B=\cfrac{4}{n_B\cdot π}\cdot\left(\cfrac{l_s}{d_{Bs}^2}+\cfrac{l_e}{d_{Be}^2}+\cfrac{0.8}{d_{B0}}\right)$$

Gasket widths theoretical

$$b_{Gt}=\left(d_{G2}-d_{G1}\right)/2$$

Gasket calculation diameters theoretical

$$d_{Gt}=\left(d_{G2}+d_{G1}\right)/2$$

Gasket area theoretical

$$A_{Gt}=π\cdot d_{Gt}\cdot b_{Gt}$$

Minimum moduli of elasticity

$\text{if }\ \text{gasket }$$\text{form}= \text{Flat gaskets, soft or composite materials or pure metallic}$
$$E_{Gm}=E_0+0.5\cdot K_1\cdot F_{G0}/A_{Ge}$$
$\text{else}$
$$E_{Gm}=0$$

Gasket calculation diameter effective

$\text{if }\ \text{gasket }$$\text{form}= \text{Flat gaskets, soft or composite materials or pure metallic}$
$$d_{Ge}=d_{G2}-b_{Ge}$$
$\text{else if }\ \text{gasket }$$\text{form}= \text{Metal gaskets with curved surfaces, simple contact}$
$$d_{Ge}=d_{G0}$$
$\text{else}$
$$d_{Ge}=d_{Gt}$$

Gasket widths effective

$$b_{Ge}=\min\left\{b_{Gi}, b_{Gt}\right\}$$

Gasket area effective

$$A_{Ge}=π\cdot d_{Ge}\cdot b_{Ge}$$

Intermediate working variable $ κ $ (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$κ=\cfrac{Z_L\cdot E_{F0}}{Z_F\cdot E_{L0}}$$
$\text{else}$
$$κ=0$$

Intermediate working variable $ \tilde{κ} $ (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{κ}=\cfrac{\tilde{Z}_L\cdot \tilde{E}_{F0}}{\tilde{Z}_F\cdot \tilde{E}_{L0}}$$
$\text{else}$
$$\tilde{κ}=0$$

Zero load condition for diameter of the position of the reaction between a loose flange and a stub or collar (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$d_{70}=\min\left\{\max\left\{d_{7,min}, \cfrac{d_{Ge}+κ\cdot d_{3e}}{1+κ}\right\}, d_{7,max}\right\}$$
$\text{else}$
$$d_{70}=0$$

Zero load condition for diameter of the position of the reaction between a loose flange and a stub or collar (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{d}_{70}=\min\left\{\max\left\{\tilde{d}_{7,min}, \cfrac{d_{Ge}+\tilde{κ}\cdot \tilde{d}_{3e}}{1+\tilde{κ}}\right\}, \tilde{d}_{7,max}\right\}$$
$\text{else}$
$$\tilde{d}_{70}=0$$

Lever arm gasket at zero load condition (first flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$h_{G0}=\left(d_{70}-d_{Ge}\right)/2$$
$\text{else}$
$$h_{G0}=\left(d_{3e}-d_{Ge}\right)/2$$

Lever arms gasket at zero load condition (second flange of the joint)

$\text{if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$\tilde{h}_{G0}=\left(\tilde{d}_{70}-d_{Ge}\right)/2$$
$\text{else}$
$$\tilde{h}_{G0}=\left(\tilde{d}_{3e}-d_{Ge}\right)/2$$

Gasket widths interim

$\text{if }\ \text{gasket }$$\text{form}= \text{Flat gaskets, soft or composite materials or pure metallic}$
$$b_{Gi}=\sqrt{\left\{\cfrac{e_G/\left(π\cdot d_{Ge}\cdot E_{Gm}\right)}{h_{G0}\cdot Z_F/E_{F0}+\tilde{h}_{G0}\cdot \tilde{Z}_F/\tilde{E}_{F0}}+\left[\cfrac{F_{G0}}{π\cdot d_{Ge}\cdot Q_{max}}\right]^2\right\}}$$
$\text{else if }\ \text{gasket }$$\text{form}= \text{Metal gaskets with curved surfaces, simple contact}$
$$b_{Gi}=\sqrt{\left\{\cfrac{6\cdot r_2\cdot\cos{φ_G\cdot F_{G0}}}{π\cdot d_{Ge}\cdot E_{G0}}+\left[\cfrac{F_{G0}}{π\cdot d_{Ge}\cdot Q_{max}}\right]^2\right\}}$$
$\text{else if }\ \text{gasket }$$\text{form}= \text{Metal gaskets with curved surfaces, double contact}$
$$b_{Gi}=\sqrt{\left\{\cfrac{12\cdot r_2\cdot\cos{φ_G\cdot F_{G0}}}{π\cdot d_{Ge}\cdot E_{G0}}+\left[\cfrac{F_{G0}}{π\cdot d_{Ge}\cdot Q_{max}}\right]^2\right\}}$$
$\text{else}$
$$b_{Gi}=b_{Gi}$$

Axial flexibility moduli of gasket

$$X_G=\cfrac{e_G}{A_{Gt}}\cdot\cfrac{b_{Gt}+e_G/2}{b_{Ge}+e_G/2}$$

Axial fluid-pressure force at load 1

$$F_{Q1}=\cfrac{π}{4}\cdot d_{Ge}^2\cdot P_1$$

Force resulting from $ F_{A0} $ and $ M_{A0} $ at zero load condition

$$F_{R0}=F_{A0}+M_{A0}\cdot 4/d_{3e}$$

Force resulting from $ F_{A1} $ and $ M_{A1} $ at load 1

$$F_{R1}=F_{A1}+M_{A1}\cdot 4/d_{3e}$$

Overall axial thermal expansion relative to bolting-up condition at load 1

$$ΔU_1=l_B\cdot α_{B1}\cdot\left(T_{B1}-T_0\right)-e_{Ft}\cdot α_{F1}\cdot\left(T_{F1}-T_0\right)-e_L\cdot α_{L1}\cdot\left(T_{L1}-T_0\right)-e_G\cdot α_{G1}\cdot\left(T_{G1}-T_0\right)-\tilde{e}_{Ft}\cdot \tilde{α}_{F1}\cdot\left(\tilde{T}_{F1}-T_0\right)-\tilde{e}_L\cdot \tilde{α}_{L1}\cdot\left(\tilde{T}_{L1}-T_0\right)$$

Modulus of elasticity gasket at zero load condition

$$E_{G0}=F_{G0}/A_{Ge}$$

Modulus of elasticity gasket at load 1

$$E_{G1}=F_{G0}/A_{Ge}$$

Axial compliances of the joint corresponding to load $ F_G $ at zero load condition

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G0}=Z_F\cdot h_G^2/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)+X_G/\left(E_{G0}\cdot g_{C0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G0}=Z_F\cdot h_G^2/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+X_B/E_{B0}\right)+X_G/\left(E_{G0}\cdot g_{C0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G0}=Z_F\cdot h_G^2/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F0}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)+X_G/\left(E_{G0}\cdot g_{C0}\right)$$
$\text{else}$
$$Y_{G0}=Z_F\cdot h_G^2/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F0}+\left(X_B/E_{B0}\right)+X_G/\left(E_{G0}\cdot g_{C0}\right)$$

Axial compliances of the joint corresponding to load $ F_G $ at load 1

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G1}=Z_F\cdot h_G^2/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)+X_G/\left(E_{G1}\cdot g_{C0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G1}=Z_F\cdot h_G^2/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+X_B/E_{B1}\right)+X_G/\left(E_{G1}\cdot g_{C0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{G1}=Z_F\cdot h_G^2/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F1}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)+X_G/\left(E_{G1}\cdot g_{C0}\right)$$
$\text{else}$
$$Y_{G1}=Z_F\cdot h_G^2/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G^2/\tilde{E}_{F1}+\left(X_B/E_{B1}\right)+X_G/\left(E_{G1}\cdot g_{C0}\right)$$

Axial compliances of the joint corresponding to load $ F_Q $ at zero load condition

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q0}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q0}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+X_B/E_{B0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q0}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F0}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)$$
$\text{else}$
$$Y_{Q0}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F0}+\left(X_B/E_{B0}\right)$$

Axial compliances of the joint corresponding to load $ F_Q $ at load 1

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q1}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q1}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+X_B/E_{B1}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{Q1}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F1}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)$$
$\text{else}$
$$Y_{Q1}=Z_F\cdot h_G\cdot\left(h_H-h_P+h_Q\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H-\tilde{h}_P+\tilde{h}_Q\right)/\tilde{E}_{F1}+\left(X_B/E_{B1}\right)$$

Axial compliances of the joint corresponding to load $ F_R $ at zero load condition

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R0}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R0}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F0}+\left(Z_L\cdot h_L^2/E_{L0}+X_B/E_{B0}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R0}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F0}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L0}+X_B/E_{B0}\right)$$
$\text{else}$
$$Y_{R0}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F0}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F0}+\left(X_B/E_{B0}\right)$$

Axial compliances of the joint corresponding to load $ F_R $ at load 1

$\text{if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}\wedge\text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R1}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(first }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R1}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F1}+\left(Z_L\cdot h_L^2/E_{L1}+X_B/E_{B1}\right)$$
$\text{else if }\ \text{flange }$$\text{type }$$\text{(second }$$\text{flange }$$\text{of }$$\text{the }$$\text{joint)}= \text{Loose flange}$
$$Y_{R1}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F1}+\left(\tilde{Z}_L\cdot \tilde{h}_L^2/\tilde{E}_{L1}+X_B/E_{B1}\right)$$
$\text{else}$
$$Y_{R1}=Z_F\cdot h_G\cdot\left(h_H+h_R\right)/E_{F1}+\tilde{Z}_F\cdot \tilde{h}_G\cdot\left(\tilde{h}_H+\tilde{h}_R\right)/\tilde{E}_{F1}+\left(X_B/E_{B1}\right)$$

Minimum gasket force at zero load condition

$$F_{G0,min}=A_{Ge}\cdot Q_{0,min}$$

Minimum required compressive stress in gasket at load 1

$$Q_{1,min}=m_1\cdot\left|P_1\right| $$

Minimum gasket force at load 1

$$F_{G1,min}=\max\left\{A_{Ge}\cdot Q_{1,min}, -\left(F_{Q1}+F_{R1}\right)\right\}$$

Minimum gasket force in assembly condition that guarantees that the required gasket force is maintained in all subsequent conditions

$$F_{GΔ}=\left\{F_{G1,min}\cdot Y_{G1}+\left[F_{Q1}\cdot Y_{Q1}+\left(F_{R1}\cdot Y_{R1}-F_{R0}\cdot Y_{R0}\right)+ΔU_1\right]\right\}/Y_{G0}$$

Required gasket force at zero load condition

$$F_{G0,req}=\max\left\{F_{G0,min}, F_{GΔ}\right\}$$

$$F_{G0}\geq F_{G0,req}$$

Required bolt force at zero load condition of all bolts

$$F_{B0,req}=F_{G0,req}+F_{R0}$$

Scatter value $ ε_{1-} $

$\text{if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench Operator feel, uncontrolled}$
$$ε_{1-}=0.3+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
$$ε_{1-}=0.2+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
$$ε_{1-}=0.1+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
$$ε_{1-}=0.2$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
$$ε_{1-}=0.15$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
$$ε_{1-}=0.1$$
$\text{else}$
$$ε_{1-}=0.07$$

Scatter value $ ε_{1+} $

$\text{if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench Operator feel, uncontrolled}$
$$ε_{1+}=0.3+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
$$ε_{1+}=0.2+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
$$ε_{1+}=0.1+0.5\cdot μ_t$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
$$ε_{1+}=0.4$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
$$ε_{1+}=0.15$$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
$$ε_{1+}=0.1$$
$\text{else}$
$$ε_{1+}=0.07$$

Scatter value of the initial bolt load for $ n_B $ bolts aboove nominal value

$$ε_{n+}=ε_{1+}\cdot\left(1+3/\sqrt{n_B}\right)/4$$

Scatter value of the initial bolt load for $ n_B $ bolts below nominal value

$$ε_{n-}=ε_{1-}\cdot\left(1+3/\sqrt{n_B}\right)/4$$

Maximum bolt force at zero load condition of all bolts

$$F_{B0,max}=F_{B0,nom}\cdot\left(1+ε_{n+}\right)$$

Minimum bolt force at zero load condition of all bolts

$$F_{B0,min}=F_{B0,nom}\cdot\left(1-ε_{n-}\right)$$

$$F_{B0,min}\geq F_{B0,req}$$
On this page