Returns the absolute value of a number. The absolute value of a number is the same number without a sign.
ABS(-9)=9
ACOT
Returns the value of the arccotangent (inverse cotangent) of the specified number.
ACOT(3.14)=0.30831566219543
ACOTH
Returns the inverse hyperbolic cotangent of the specified number.
ACOTH(3.14)=0.32994497940173
ARCCOS
Returns the arccosine (the inverse of the cosine function) of the specified number. The arccosine is the angle whose cosine is the specified number. The resulting angle is given in radians in the range zero to pi.
ARCCOS(0.5)=1.0471975511966
ARCCOSH
Returns the inverse hyperbolic cosine of a number. The number must be greater than or equal to 1. The inverse hyperbolic cosine is a value whose hyperbolic cosine is a number, so ACOSH(COSH(number)) equals the number.
ARCCOSH(2)=1.3169578969248
ARCSIN
Returns the arcsine (the inverse of the sine) of the specified number. The arcsine is the angle whose sine is the specified number. The resulting angle is given in radians in the interval from pi/2 to pi/2.
ARCSIN(1)=1.5707963267949
ARCSINH
Returns the hyperbolic arcsine of the specified number. The hyperbolic arcsine is a value whose hyperbolic sine is the specified number, so ARCSINH(SINH(number)) is equal to the specified number.
ARCSINH(1)=0.88137358701954
ARCTG
Returns the arctangent (the inverse of the tangent function) of the specified number. The arctangent is the angle whose tangent is the specified number. The resulting angle is given in radians in the range pi/2 to pi/2.
ARCTG(2)=1.1071487177941
ARCTG2
Returns the arctangent (the inverse of tangent) of the specified x and y coordinates. The arctangent is the angle between the x axis and the line containing the origin (0;0) and the point at coordinates (x_number, y_number). This angle is given in radians in the interval -pi to pi, except for the value -pi.
ARCTG2(2, 3)=0.98279372324733
ARCTGH
Returns the arctangent (the inverse of the tangent function) of the specified number. The arctangent is the angle whose tangent is the specified number. The resulting angle is given in radians in the range pi/2 to pi/2.
ARCTGH(0.5)=0.54930614433405
AVERAGEA
Calculates the average (arithmetic mean) of the values in the argument list.
AVERAGEA(10, 20, 30)=20
CEILING
Rounds a number up to the nearest integer or to the nearest multiple of significance.
CEILING(1.2)=2
COS
Returns the cosine of the specified angle.
COS(1)=0.54030230586814
COSH
Returns the hyperbolic cosine of the specified number.
COSH(1)=1.5430806348152
COT
Returns the cotangent of an angle specified in radians.
COT(1)=0.64209261593433
COTH
Returns the hyperbolic cotangent of a hyperbolic angle.
COTH(1)=1.3130352854993
CSC
Returns the cosecant of an angle specified in radians.
CSC(1)=1.1883951057781
CSCH
Returns the hyperbolic cosecant of an angle specified in radians.
CSCH(1)=0.85091812823932
DEGREES
Converts radians to degrees.
DEGREES(PI())=180
EXP
Returns e raised to the power of the argument number. The constant e is equal to 2.718281828459, the base of natural logarithms.
EXP(1)=2.718281828459
FACT
Returns the factorial of a number. The factorial of a number is equal to 1*2*3*...* number.
FACT(12)=479001600
FACTDOUBLE
Returns the double factorial of the specified number.
FACTDOUBLE(12)=46080
FISHER
Returns the Fisher transformation value of x. This transformation produces a function with a normal distribution rather than a skewed distribution. You can use this function to test the hypothesis about the correlation coefficient.
FISHER(0.9)=1.4722194895832
FISHERINV
Returns the inverse of the Fisher transform. You can use this transform to analyze correlations between regions or matrices of data. If y = FISHER(x), FISHERINV(y) = x.
FISHERINV(10)=0.99999999587769
FLOOR
Rounds a number down to the nearest whole number or to the nearest multiple of the specified value.
FLOOR(1.2)=1
LCM
Returns the least common multiple of integers. The least common multiple is the smallest positive integer that is a multiple of all integer arguments number1, number2, and so on. Use LCM to add fractions with different denominators.
LCM(10, 6)=30
LN
Returns the natural logarithm of a number. The base of the natural logarithm is the constant e (2.71828182845904).
LN(10)=2.302585092994
LOG
Returns the base 10 logarithm of a number.
LOG(10)=1
LOGZ
Returns the logarithm of a number to a given base.
LOGZ(10, 3)=2.0959032742894
MAX
Returns the maximum value in a set of values.
MAX(10, -10)=10
MEDIAN
Returns the median of the specified numbers. The median is the number that lies in the middle of a set of numbers.
MEDIAN(10, 20, 15, 1)=12.5
MIN
Returns the minimum value in a set of values.
MIN(10, -10)=-10
MOD
Returns the remainder after dividing a number by a divisor.
MOD(20, 3)=2
PI
Returns the number 3.1415926535898, the mathematical constant pi.
PI()=3.1415926535898
POWER
Returns the power of a number.
POWER(3, 2)=9
RADIANS
Converts degrees to radians.
RADIANS(180)=3.1415926535898
SEC
Returns the secant of an angle.
SEC(0.5)=1.1394939273245
SIN
Returns the sine of a given angle.
SIN(PI()/6)=0.5
SINH
Returns the hyperbolic sine of a number.
SINH(PI()/6)=0.54785347388804
SQRT
Returns the positive square root.
SQRT(100)=10
TG
Returns the tangent of the specified angle.
TG(1)=1.5574077246549
TGH
Returns the hyperbolic tangent of the argument.
TGH(1)=0.76159415595576
Info for Search
- The symbol indicates a web page with an with calculation or data.
- The symbol indicates a web page with an with information for the given issue (it is the default page).
- The symbol indicates a web page with an list of symbol.
- The symbol indicates a web page with an image.
- The symbol indicates a web page with an unit converters.
- The symbol indicates a web page with an RAL colors.
- The symbol indicates a web page with an icon.
- The symbol indicates a web page with an basic equations.
- The symbol indicates a web page with an with information for users.
Back to search?
Help for Search
Basic - (example: Hydraulic engineering) searches for the entered expression in an exact match with the entry - i.e. in the order in which the words follow each other.
Logical OR - (example: butterfly valve OR lattice disc) pages containing one, the other, or both of the entered keywords will be included in the results.
Logical AND - (example: ASME AND internal pressure) only pages containing both required words will appear in the results.
Logical NOT - (example: spherical NOT ASME) pages containing the name "spherical" but not containing the word "ASME" will be displayed in the results.
Back to search?
Menu
Bookmarks
Folder
Notepad
Cookies
This website uses Google Analytics to collect traffic data. By clicking the button, you agree to the collection of this data.
Assembly using a torque wrench
Values for calculation
Calculation
Pitch between bolts (first flange of the joint)
$$p_B=π\cdot d_3/n_B$$
$p_B=π\cdot d_3/n_B$
Equations in LaTeX code
p_B=π\cdot d_3/n_B
Pitch between bolts (second flange of the joint)
$$\tilde{p}_B=p_B$$
$\tilde{p}_B=p_B$
Equations in LaTeX code
\tilde{p}_B=p_B
Effective bolt circle diameter (first flange of the joint)
$$d_{3e}=d_3\cdot\left(1-2/n_B^2\right)$$
$d_{3e}=d_3\cdot\left(1-2/n_B^2\right)$
Equations in LaTeX code
d_{3e}=d_3\cdot\left(1-2/n_B^2\right)
Effective bolt circle diameter (second flange of the joint)
$$\tilde{d}_{3e}=d_{3e}$$
$\tilde{d}_{3e}=d_{3e}$
Equations in LaTeX code
\tilde{d}_{3e}=d_{3e}
Effective diameters of bolt holes (first flange of the joint)
$$d_{5e}=d_5\cdot\sqrt{d_5/p_B}$$
$d_{5e}=d_5\cdot\sqrt{d_5/p_B}$
Equations in LaTeX code
d_{5e}=d_5\cdot\sqrt{d_5/p_B}
Effective diameters of bolt holes (second flange of the joint)
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}
$$ε_{1-}=0.2+0.5\cdot μ_t$$
$ε_{1-}=0.2+0.5\cdot μ_t$
Equations in LaTeX code
ε_{1-}=0.2+0.5\cdot μ_t
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}
$$ε_{1-}=0.1+0.5\cdot μ_t$$
$ε_{1-}=0.1+0.5\cdot μ_t$
Equations in LaTeX code
ε_{1-}=0.1+0.5\cdot μ_t
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}
$$ε_{1-}=0.2$$
$ε_{1-}=0.2$
Equations in LaTeX code
ε_{1-}=0.2
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}
$$ε_{1-}=0.15$$
$ε_{1-}=0.15$
Equations in LaTeX code
ε_{1-}=0.15
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Impact wrench}
$$ε_{1+}=0.2+0.5\cdot μ_t$$
$ε_{1+}=0.2+0.5\cdot μ_t$
Equations in LaTeX code
ε_{1+}=0.2+0.5\cdot μ_t
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Torque wrench. Wrench with measuring of torque}
$$ε_{1+}=0.1+0.5\cdot μ_t$$
$ε_{1+}=0.1+0.5\cdot μ_t$
Equations in LaTeX code
ε_{1+}=0.1+0.5\cdot μ_t
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Hydraulic tensioner. Measuring of hydraulic pressure}
$$ε_{1+}=0.4$$
$ε_{1+}=0.4$
Equations in LaTeX code
ε_{1+}=0.4
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench or hydraulic tensioner. Measuring of bolt elongation}
$$ε_{1+}=0.15$$
$ε_{1+}=0.15$
Equations in LaTeX code
ε_{1+}=0.15
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
$\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}$
Equations in LaTeX code
\text{else if }\ \text{bolting-up }$$\text{(tightening) }$$\text{method }$$\text{measuring }$$\text{method}= \text{Wrench. Measuring of turn of nut}
$$ε_{1+}=0.1$$
$ε_{1+}=0.1$
Equations in LaTeX code
ε_{1+}=0.1
$\text{else}$
$\text{else}$
Equations in LaTeX code
\text{else}
$$ε_{1+}=0.07$$
$ε_{1+}=0.07$
Equations in LaTeX code
ε_{1+}=0.07
Scatter value of the initial bolt load for $ n_B $ bolts aboove nominal value