Menu

Bolted rectangular flat end with full-face gasket

Values for calculation

$ T $ $ \mathrm{°C} $
$ T_{test} $ $ \mathrm{°C} $
$ T_{assembly} $ $ \mathrm{°C} $
$ P $ $ \mathrm{MPa} $
$ P_{test} $ $ \mathrm{MPa} $
$ a' $ $ \mathrm{mm} $
$ b' $ $ \mathrm{mm} $
$ W $ $ \mathrm{N} $
$ c $ $ \mathrm{mm} $
$ n $
$ t_B $ $ \mathrm{mm} $
$ R_{p0.2/T} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{test}} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{assembly}} $ $ \mathrm{MPa} $
$ R_{p1.0/T} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{test}} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{assembly}} $ $ \mathrm{MPa} $
$ R_{m/20} $ $ \mathrm{MPa} $
$ R_{m/T} $ $ \mathrm{MPa} $
$ R_{m/T_{test}} $ $ \mathrm{MPa} $
$ R_{m/T_{assembly}} $ $ \mathrm{MPa} $

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Maximum allowed value of the nominal design stress for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}$$
$\text{else}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}$$

Maximum allowed value of the nominal design stress for assembly cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_A=\min\left(\cfrac{R_{p0.2/T_{assembly}}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_A=\max\left[\cfrac{R_{p1.0/T_{assembly}}}{1.5}, \min\left(\cfrac{R_{p1.0/T_{assembly}}}{1.2}, \cfrac{R_{m/T_{assembly}}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_A=\cfrac{R_{p1.0/T_{assembly}}}{1.5}$$
$\text{else}$
$$f_A=\min\left(\cfrac{R_{p0.2/T_{assembly}}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Shape factors for calculation of flat ends of non-circular shape

$$C_3=-0.1069\cdot\left(\cfrac{a'}{b'}\right)^6+9\cdot 10^{-11}\cdot\left(\cfrac{a'}{b'}\right)^5+0.2537\cdot\left(\cfrac{a'}{b'}\right)^4-6\cdot 10^{-11}\cdot\left(\cfrac{a'}{b'}\right)^3-0.4294\cdot\left(\cfrac{a'}{b'}\right)^2-7\cdot 10^{-10}\cdot\cfrac{a'}{b'}+0.9397$$

Thickness of the flat end

$$e=\max\left(C_3\cdot a'\cdot\sqrt{\cfrac{P}{f_d}}, C_3\cdot a'\cdot\sqrt{\cfrac{P_{test}}{f_{test}}}\right)$$

Minimum thickness for the flanged extension

$$e_1=\sqrt{\cfrac{6\cdot W\cdot c}{n\cdot t_B\cdot\min\left(f_d, f_{test}, f_A\right)}}$$