Processing math: 0%
Menu

Equivalent diameter for set-on nozzles

Values for calculation

A \mathrm{mm^2}
d_i \mathrm{mm}
e \mathrm{mm}
T \mathrm{°C}
T_{test} \mathrm{°C}
R_{p0.2/T} \mathrm{MPa}
R_{p0.2/T_{test}} \mathrm{MPa}
R_{p1.0/T} \mathrm{MPa}
R_{p1.0/T_{test}} \mathrm{MPa}
R_{m/20} \mathrm{MPa}
R_{m/T} \mathrm{MPa}
R_{m/T_{test}} \mathrm{MPa}
R_{p0.2/T/n} \mathrm{MPa}
R_{p0.2/T_{test}/n} \mathrm{MPa}
R_{p1.0/T/n} \mathrm{MPa}
R_{p1.0/T_{test}/n} \mathrm{MPa}
R_{m/20/n} \mathrm{MPa}
R_{m/T/n} \mathrm{MPa}
R_{m/T_{test}/n} \mathrm{MPa}

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

\text{if }\ \text{type }\text{of }\text{material}= \text{Cast steels}
f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)
\text{else if }\ \text{type }\text{of }\text{material}= \text{Austenitic steels}\wedge\text{min. }\text{elongation }\text{after }\text{fracture}\geq 35
f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]
\text{else if }\ \text{type }\text{of }\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }\text{elongation }\text{after }\text{fracture}< 35
f_d=\cfrac{R_{p1.0/T}}{1.5}
\text{else}
f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)

Maximum allowed value of the nominal design stress for testing load cases

\text{if }\ \text{type }\text{of }\text{material}= \text{Cast steels}
f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}
\text{else if }\ \text{type }\text{of }\text{material}= \text{Austenitic steels}\wedge\text{min. }\text{elongation }\text{after }\text{fracture}\geq 35
f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)
\text{else if }\ \text{type }\text{of }\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }\text{elongation }\text{after }\text{fracture}< 35
f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}
\text{else}
f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}

Nominal design stress at calculation temperature of the nozzle for normal operating load cases

\text{if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Cast steels}
f_n=\min\left(\cfrac{R_{p0.2/T/n}}{1.9}, \cfrac{R_{m/20/n}}{3}\right)
\text{else if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Austenitic steels}\wedge\text{min. }\text{elongation }\text{after }\text{fracture }\text{of }\text{the }\text{nozzle}\geq 35
f_n=\max\left[\cfrac{R_{p1.0/T/n}}{1.5}, \min\left(\cfrac{R_{p1.0/T/n}}{1.2}, \cfrac{R_{m/T/n}}{3}\right)\right]
\text{else if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Austenitic steels}\wedge 30\le \text{min. }\text{elongation }\text{after }\text{fracture }\text{of }\text{the }\text{nozzle}< 35
f_n=\cfrac{R_{p1.0/T/n}}{1.5}
\text{else}
f_n=\min\left(\cfrac{R_{p0.2/T/n}}{1.5}, \cfrac{R_{m/20/n}}{2.4}\right)

Nominal design stress at calculation temperature of the nozzle for testing load cases

\text{if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Cast steels}
f_{n_{test}}=\cfrac{R_{p0.2/T_{test}/n}}{1.33}
\text{else if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Austenitic steels}\wedge\text{min. }\text{elongation }\text{after }\text{fracture }\text{of }\text{the }\text{nozzle}\geq 35
f_{n_{test}}=\max\left(\cfrac{R_{p1.0/T_{test}/n}}{1.05}, \cfrac{R_{m/T_{test}/n}}{2}\right)
\text{else if }\ \text{type }\text{of }\text{material }\text{of }\text{the }\text{nozzle}= \text{Austenitic steels}\wedge 30\le \text{min. }\text{elongation }\text{after }\text{fracture }\text{of }\text{the }\text{nozzle}< 35
f_{n_{test}}=\cfrac{R_{p1.0/T_{test}/n}}{1.05}
\text{else}
f_{n_{test}}=\cfrac{R_{p0.2/T_{test}/n}}{1.05}

Nozzle reiforcement area

A'=\min\left(A, A\cdot\cfrac{f_d}{f_n}, A\cdot\cfrac{f_{test}}{f_{n_{test}}}\right)

Equivalent diameter of a nozzle

d=d_i-\cfrac{2\cdot A'}{e}