Menu

Equivalent diameter for set-on nozzles

Values for calculation

$ A $ $ \mathrm{mm^2} $
$ d_i $ $ \mathrm{mm} $
$ e $ $ \mathrm{mm} $
$ T $ $ \mathrm{°C} $
$ T_{test} $ $ \mathrm{°C} $
$ R_{p0.2/T} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{test}} $ $ \mathrm{MPa} $
$ R_{p1.0/T} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{test}} $ $ \mathrm{MPa} $
$ R_{m/20} $ $ \mathrm{MPa} $
$ R_{m/T} $ $ \mathrm{MPa} $
$ R_{m/T_{test}} $ $ \mathrm{MPa} $
$ R_{p0.2/T/n} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{test}/n} $ $ \mathrm{MPa} $
$ R_{p1.0/T/n} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{test}/n} $ $ \mathrm{MPa} $
$ R_{m/20/n} $ $ \mathrm{MPa} $
$ R_{m/T/n} $ $ \mathrm{MPa} $
$ R_{m/T_{test}/n} $ $ \mathrm{MPa} $

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Maximum allowed value of the nominal design stress for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}$$
$\text{else}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}$$

Nominal design stress at calculation temperature of the nozzle for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Cast steels}$
$$f_n=\min\left(\cfrac{R_{p0.2/T/n}}{1.9}, \cfrac{R_{m/20/n}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture }$$\text{of }$$\text{the }$$\text{nozzle}\geq 35$
$$f_n=\max\left[\cfrac{R_{p1.0/T/n}}{1.5}, \min\left(\cfrac{R_{p1.0/T/n}}{1.2}, \cfrac{R_{m/T/n}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture }$$\text{of }$$\text{the }$$\text{nozzle}< 35$
$$f_n=\cfrac{R_{p1.0/T/n}}{1.5}$$
$\text{else}$
$$f_n=\min\left(\cfrac{R_{p0.2/T/n}}{1.5}, \cfrac{R_{m/20/n}}{2.4}\right)$$

Nominal design stress at calculation temperature of the nozzle for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Cast steels}$
$$f_{n_{test}}=\cfrac{R_{p0.2/T_{test}/n}}{1.33}$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture }$$\text{of }$$\text{the }$$\text{nozzle}\geq 35$
$$f_{n_{test}}=\max\left(\cfrac{R_{p1.0/T_{test}/n}}{1.05}, \cfrac{R_{m/T_{test}/n}}{2}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{the }$$\text{nozzle}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture }$$\text{of }$$\text{the }$$\text{nozzle}< 35$
$$f_{n_{test}}=\cfrac{R_{p1.0/T_{test}/n}}{1.05}$$
$\text{else}$
$$f_{n_{test}}=\cfrac{R_{p0.2/T_{test}/n}}{1.05}$$

Nozzle reiforcement area

$$A'=\min\left(A, A\cdot\cfrac{f_d}{f_n}, A\cdot\cfrac{f_{test}}{f_{n_{test}}}\right)$$

Equivalent diameter of a nozzle

$$d=d_i-\cfrac{2\cdot A'}{e}$$