Menu

Full face flange - soft gasket for external pressure

Full face flange - soft gasket G C G 0 h T H T B W g 1 H D h D e g 0 H G h G A 1 H R h R
Full face flange - soft gasket

Values for calculation

$ T $ $ \mathrm{°C} $
$ T_{test} $ $ \mathrm{°C} $
$ T_{assembly} $ $ \mathrm{°C} $
$ P_e $ $ \mathrm{MPa} $
$ P_{e_{test}} $ $ \mathrm{MPa} $
$ R_{p0.2/T} $ $ \mathrm{MPa} $
$ R_{p0.2/T_{test}} $ $ \mathrm{MPa} $
$ R_{p1.0/T} $ $ \mathrm{MPa} $
$ R_{p1.0/T_{test}} $ $ \mathrm{MPa} $
$ R_{m/20} $ $ \mathrm{MPa} $
$ R_{m/T} $ $ \mathrm{MPa} $
$ R_{m/T_{test}} $ $ \mathrm{MPa} $
$ R_{p0.2/bolt/T} $ $ \mathrm{MPa} $
$ R_{p0.2/bolt/T_{test}} $ $ \mathrm{MPa} $
$ R_{p0.2/bolt/T_{assembly}} $ $ \mathrm{MPa} $
$ R_{m/20/bolt} $ $ \mathrm{MPa} $
$ R_{m/bolt/T} $ $ \mathrm{MPa} $
$ R_{m/bolt/T_{test}} $ $ \mathrm{MPa} $
$ R_{m/bolt/T_{assembly}} $ $ \mathrm{MPa} $
$ A_1 $ $ \mathrm{mm} $
$ G_0 $ $ \mathrm{mm} $
$ C $ $ \mathrm{mm} $
$ B $ $ \mathrm{mm} $
$ d_h $ $ \mathrm{mm} $
$ d_b $ $ \mathrm{mm} $
$ n $
$ g_1 $ $ \mathrm{mm} $
$ m $
$ y $ $ \mathrm{MPa} $
$ A_B $ $ \mathrm{mm^2} $

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Maximum allowed value of the nominal design stress for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.33}$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$
$$f_{test}=\max\left(\cfrac{R_{p1.0/T_{test}}}{1.05}, \cfrac{R_{m/T_{test}}}{2}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_{test}=\cfrac{R_{p1.0/T_{test}}}{1.05}$$
$\text{else}$
$$f_{test}=\cfrac{R_{p0.2/T_{test}}}{1.05}$$

Bolt nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{bolt}= \text{Austenitic steels}$
$$f_B=\cfrac{R_{m/bolt/T}}{4}$$
$\text{else}$
$$f_B=\min\left(\cfrac{R_{p0.2/bolt/T}}{3}, \cfrac{R_{m/20/bolt}}{4}\right)$$

Bolt nominal design stress for testing load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{bolt}= \text{Austenitic steels}$
$$f_{B_{test}}=\cfrac{R_{m/bolt/T_{test}}}{4}\cdot 1.5$$
$\text{else}$
$$f_{B_{test}}=\min\left(\cfrac{R_{p0.2/bolt/T_{test}}}{3}, \cfrac{R_{m/20/bolt}}{4}\right)\cdot 1.5$$

Bolt nominal design stress at assembly temperature

$\text{if }\ \text{type }$$\text{of }$$\text{material }$$\text{of }$$\text{bolt}= \text{Austenitic steels}$
$$f_{B,A}=\cfrac{R_{m/bolt/T_{assembly}}}{4}$$
$\text{else}$
$$f_{B,A}=\min\left(\cfrac{R_{p0.2/bolt/T_{assembly}}}{3}, \cfrac{R_{m/20/bolt}}{4}\right)$$

Effective gasket pressure width

$$2b''=5$$

Basic assembly width effective under initial tightening up

$$b'_0=\min\left(G_0-C, C-A_1\right)$$

Effective assembly width

$$b'=4\cdot \sqrt{b'_0} $$

Diameter at location of gasket load reaction

$$G=C-\left(d_h+2b''\right)$$

Total hydrostatic end force

$$H=\cfrac{π}{4}\cdot\left(C-d_h\right)^2\cdot P_e$$

Total hydrostatic end force for testing load cases

$$H_{test}=\cfrac{π}{4}\cdot\left(C-d_h\right)^2\cdot P_{e_{test}}$$

Compression load on gasket to ensure tight joint

$$H_G=2b''\cdot π\cdot G\cdot m\cdot P_e$$

Compression load on gasket to ensure tight joint for testing load cases

$$H_{G_{test}}=2b''\cdot π\cdot G\cdot m\cdot P_{e_{test}}$$

Hydrostatic end force applied via shell to flange

$$H_D=\cfrac{π}{4}\cdot\left(B^2\cdot P_e\right)$$

Hydrostatic end force applied via shell to flange for testing load cases

$$H_{D_{test}}=\cfrac{π}{4}\cdot\left(B^2\cdot P_{e_{test}}\right)$$

Hydrostatic end force due to pressure on flange face

$$H_T=H-H_D$$

Hydrostatic end force due to pressure on flange face for testing load cases

$$H_{T_{test}}=H_{test}-H_{D_{test}}$$

Radial distance from bolt circle to circle on which $ H_D $ acts

$$h_D=\left(C-B-g_1\right)/2$$

Radial distance from gasket load reaction to bolt circle

$$h_G=\left(d_h+2b''\right)/2$$

Radial distance from bolt circle to circle on which $ H_T $ acts

$$h_T=\left(C+d_h+2b''-B\right)/4$$

Radial distance from bolt circle to circle on which $ H_R $ acts

$$h_R=\left(G_0-C+d_h\right)/4$$

Balancing radial moment in flange along line of bolt holes

$$M_R=H_D\cdot h_D+H_T\cdot h_T+H_G\cdot h_G$$

Balancing radial moment in flange along line of bolt holes for testing load cases

$$M_{R_{test}}=H_{D_{test}}\cdot h_D+H_{T_{test}}\cdot h_T+H_{G_{test}}\cdot h_G$$

Balancing reaction force outside bolt circle in opposition to moments due to loads inside bolt circle

$$H_R=M_R/h_R$$

Balancing reaction force outside bolt circle in opposition to moments due to loads inside bolt circle for testing load cases

$$H_{R_{test}}=M_{R_{test}}/h_R$$

Minimum required bolt load for assembly condition

$$W_A=π\cdot C\cdot b'\cdot y$$

Minimum required bolt load for operating condition

$$W_{op}=0$$

Minimum required bolt load for testing load cases

$$W_{test}=0$$

Total required cross-sectional area of bolts

$$A_{B,min}=\max\left(\cfrac{W_A}{f_{B,A}}, \cfrac{W_{op}}{f_B}, \cfrac{W_{test}}{f_{B_{test}}}\right)$$

$$A_B\geq A_{B,min}$$

Distance between centre lines of adjacent bolts

$$δ_b=C\cdot\sin{\cfrac{π}{n}}$$

Minimum flange thickness, measured at the thinnest section

$$e=\max\left(\sqrt{\cfrac{6\cdot M_R}{f_d\cdot\left(π\cdot C-n\cdot d_h\right)}}, \cfrac{\left(A_1+2\cdot g_1\right)\cdot P_e}{2\cdot f_d}\right)$$

Minimum flange thickness, measured at the thinnest section for testing load cases

$$e_{test}=\max\left(\sqrt{\cfrac{6\cdot M_{R_{test}}}{f_{test}\cdot\left(π\cdot C-n\cdot d_h\right)}}, \cfrac{\left(A_1+2\cdot g_1\right)\cdot P_{e_{test}}}{2\cdot f_{test}}\right)$$
On this page