Heating/cooling channels

Values for calculation

$T$ $\mathrm{°C}$
$P_c$ $\mathrm{MPa}$
$a$ $\mathrm{mm}$
$R_{p0.2/T}$ $\mathrm{MPa}$
$R_{p1.0/T}$ $\mathrm{MPa}$
$R_{m/20}$ $\mathrm{MPa}$
$R_{m/T}$ $\mathrm{MPa}$

Calculation

Maximum allowed value of the nominal design stress for normal operating load cases

$\text{if }\ \text{type }$$\text{of }$$\text{material}= \text{Cast steels}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.9}, \cfrac{R_{m/20}}{3}\right)$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge\text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}\geq 35$$f_d=\max\left[\cfrac{R_{p1.0/T}}{1.5}, \min\left(\cfrac{R_{p1.0/T}}{1.2}, \cfrac{R_{m/T}}{3}\right)\right]$$\text{else if }\ \text{type }$$\text{of }$$\text{material}= \text{Austenitic steels}\wedge 30\le \text{min. }$$\text{elongation }$$\text{after }$$\text{fracture}< 35$
$$f_d=\cfrac{R_{p1.0/T}}{1.5}$$
$\text{else}$
$$f_d=\min\left(\cfrac{R_{p0.2/T}}{1.5}, \cfrac{R_{m/20}}{2.4}\right)$$

Cylinder thickness required to carry the pressure in the channels

$$e=a\cdot\sqrt{\cfrac{P_c}{3\cdot f_d}}$$