Menu

Fatigue strength of welded components

Values for calculation

$ e_n $ $ \mathrm{mm} $
$ T^* $ $ \mathrm{°C} $
$ Δσ_{eq} $ $ \mathrm{MPa} $
$ m_1 $
$ C_1 $
$ m_2 $
$ C_2 $
$ Δσ_D $ $ \mathrm{MPa} $
$ Δσ_{Cut} $ $ \mathrm{MPa} $

Calculation

Thickness correction factor in welded components

$\text{if }\ e_n> 150$
$$f_{ew}=\left(\cfrac{25}{150}\right)^{0.25}$$
$\text{else if }\ e_n\le 25$
$$f_{ew}=1$$
$\text{else}$
$$f_{ew}=\left(\cfrac{25}{e_n}\right)^{0.25}$$

Temperature correction factor

$\text{if }\ T^*\le 100$
$$f_{t^*}=1$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}=\text{ferritic material}$
$$f_{t^*}=1.03-1.5\cdot 10^{-4}\cdot T^*-1.5\cdot 10^{-6}\cdot {T^*}^2$$
$\text{else if }\ \text{type }$$\text{of }$$\text{material}=\text{austenitic material}$
$$f_{t^*}=1.043-4.3\cdot 10^{-4}\cdot T^*$$
$\text{else}$
$$f_{t^*}=1$$

Overall correction factor applied to welded components

$$f_w=f_{ew}\cdot f_{t^*}$$

Allowable number of cycles obtained from the fatigue design curves

$\text{if }\ \cfrac{Δσ_{eq}}{f_w}\geq Δσ_D$
$$N=\cfrac{C_1}{\left(\cfrac{Δσ_{eq}}{f_w}\right)^{m_1}}$$
$\text{else if }\ Δσ_{Cut}< \cfrac{Δσ_{eq}}{f_w}< Δσ_D$
$$N=\cfrac{C_2}{\left(\cfrac{Δσ_{eq}}{f_w}\right)^{m_2}}$$
$\text{else}$
$$N={INF} $$