$ $ |
bolt |
$\mathrm{ }$ |
$ $ |
type of strut mounting |
$\mathrm{ }$ |
$A$ |
function $ A $ |
$\mathrm{ }$ |
$A_b$ |
cross‐sectional area of the bolts |
$\mathrm{mm^2}$ |
$B$ |
function $ B $ |
$\mathrm{ }$ |
$C$ |
function $ C $ |
$\mathrm{ }$ |
$C_1$ |
coefficient $ C_1 $ |
$\mathrm{}$ |
$C_2$ |
coefficient $ C_2 $ |
$\mathrm{}$ |
$C_3$ |
coefficient $ C_3 $ |
$\mathrm{}$ |
$C_4$ |
coefficient $ C_4 $ |
$\mathrm{}$ |
$C_5$ |
coefficient $ C_5 $ |
$\mathrm{}$ |
$C_c$ |
coefficient according to load |
$\mathrm{ }$ |
$D$ |
diameter of the shaft |
$\mathrm{mm}$ |
$D$ |
basic major diameter of internal thread (nominal diameter) |
$\mathrm{mm}$ |
$D$ |
diameter, larger diameter |
$\mathrm{mm}$ |
$D$ |
function $ D $ |
$\mathrm{ }$ |
$D_1$ |
basic minor diameter of internal thread |
$\mathrm{mm}$ |
$D_2$ |
basic pitch diameter of internal thread |
$\mathrm{mm}$ |
$E$ |
Young's modulus |
$\mathrm{MPa}$ |
$E$ |
function $ E $ |
$\mathrm{ }$ |
$E_k$ |
kinetic energy |
$\mathrm{J}$ |
$E_k$ |
rotational kinetic energy |
$\mathrm{J}$ |
$E_p$ |
gravitational potential energy |
$\mathrm{J}$ |
$E_p$ |
elastic potential energy |
$\mathrm{J}$ |
$F$ |
force |
$\mathrm{N}$ |
$F$ |
gravitational force between two bodies |
$\mathrm{N}$ |
$F$ |
function $ F $ |
$\mathrm{ }$ |
$F_f$ |
friction force |
$\mathrm{N}$ |
$F_{max}$ |
maximal (critical) force |
$\mathrm{N}$ |
$G$ |
gravitational constant |
$\mathrm{m^3\cdot kg^{-1}\cdot s^{-2}}$ |
$G$ |
function $ G $ |
$\mathrm{ }$ |
$H$ |
height of fundamental triangle |
$\mathrm{mm}$ |
$H$ |
width, larger width |
$\mathrm{mm}$ |
$H$ |
geopotential altitude |
$\mathrm{m}$ |
$H_b$ |
lower limit geopotential altitude |
$\mathrm{m}$ |
$H_p$ |
pressure scale height |
$\mathrm{m}$ |
$I$ |
exponent $ I $ |
$\mathrm{ }$ |
$I$ |
second moment of area |
$\mathrm{mm^4}$ |
$I$ |
moment of inertia |
$\mathrm{kg\cdot m^2}$ |
$I$ |
moment of Inertia for a simple pendulum |
$\mathrm{kg\cdot m^2}$ |
$J$ |
exponent $ J $ |
$\mathrm{ }$ |
$J$ |
impulse |
$\mathrm{kg\cdot m/s}$ |
$J^o$ |
exponent $ J^o $ |
$\mathrm{ }$ |
$K_t$ |
stress concentration factor |
$\mathrm{ }$ |
$K_{tg}$ |
stress concentration factor with the nominal stress based on gross area |
$\mathrm{ }$ |
$K_{tn}$ |
stress concentration factor with the nominal stress based on net area |
$\mathrm{ }$ |
$K_{ts}$ |
stress concentration factor for shear stress |
$\mathrm{ }$ |
$L$ |
strut length |
$\mathrm{mm}$ |
$L$ |
angular momentum |
$\mathrm{kg\cdot m^2/s}$ |
$M$ |
air molar mass at sea level |
$\mathrm{kg\cdot kmol^{-1}}$ |
$M$ |
moment |
$\mathrm{Nm}$ |
$M$ |
moment of force |
$\mathrm{Nm}$ |
$M$ |
rotational force |
$\mathrm{Nm}$ |
$N_A$ |
Avogadro constant |
$\mathrm{kmol^{-1}}$ |
$P$ |
pitch |
$\mathrm{mm}$ |
$P$ |
load, force |
$\mathrm{N}$ |
$P_{SV}$ |
saturated vapor pressure |
$\mathrm{Pa}$ |
$P_{all-B}$ |
allowable bearing stress |
$\mathrm{MPa}$ |
$R$ |
specific gas constant |
$\mathrm{J\cdot K^{-1}\cdot kg^{-1}}$ |
$R$ |
specific gas constant of ordinary water |
$\mathrm{J\cdot kg^{-1}\cdot K^{-1}}$ |
$R^*$ |
universal gas constant |
$\mathrm{J\cdot K^{-1}\cdot kmol^{-1}}$ |
$S$ |
Sutherland's empirical coefficients $ S $ |
$\mathrm{K}$ |
$S$ |
profile area |
$\mathrm{mm^2}$ |
$S_F$ |
safety factor |
$\mathrm{ }$ |
$S_{y}$ |
the minimum yield strength |
$\mathrm{MPa}$ |
$T$ |
temperature $ T $ |
$\mathrm{K}$ |
$T$ |
torque |
$\mathrm{Nm}$ |
$T$ |
the water temperature |
$\mathrm{°C}$ |
$T^*$ |
temperature reducing quantity |
$\mathrm{K}$ |
$T_b$ |
lower limit temperature |
$\mathrm{K}$ |
$T_{SV}$ |
saturated vapor temperature |
$\mathrm{°C}$ |
$W$ |
work |
$\mathrm{J}$ |
$W$ |
work done by rotational force |
$\mathrm{J}$ |
$\text{Region}$ |
region |
$\mathrm{ }$ |
$a$ |
speed of Sound |
$\mathrm{m/s}$ |
$a$ |
acceleration |
$\mathrm{m/s{^2}}$ |
$b$ |
width key |
$\mathrm{mm}$ |
$c$ |
extreme fiber distance |
$\mathrm{mm}$ |
$c_p$ |
specific isobaric heat capacity |
$\mathrm{J\cdot kg^{-1}\cdot K^{-1}}$ |
$c_ν$ |
specific isochoric heat capacity |
$\mathrm{J\cdot kg^{-1}\cdot K^{-1}}$ |
$d$ |
basic major diameter of external thread (nominal diameter) |
$\mathrm{mm}$ |
$d$ |
diameter |
$\mathrm{mm}$ |
$d$ |
width |
$\mathrm{mm}$ |
$d_1$ |
basic minor diameter of external thread |
$\mathrm{mm}$ |
$d_2$ |
basic pitch diameter of external thread |
$\mathrm{mm}$ |
$d_3$ |
basic smaller diameter of external thread |
$\mathrm{mm}$ |
$e$ |
eccentricity |
$\mathrm{mm}$ |
$g$ |
gravitational acceleration |
$\mathrm{m/s^2}$ |
$h$ |
height key |
$\mathrm{mm}$ |
$h$ |
thickness |
$\mathrm{mm}$ |
$h$ |
specific enthalpy |
$\mathrm{J\cdot kg^{-1}}$ |
$h$ |
height |
$\mathrm{m}$ |
$h$ |
height above sea level |
$\mathrm{m}$ |
$i$ |
gyration radius |
$\mathrm{mm}$ |
$k$ |
spring constant |
$\mathrm{N/m}$ |
$l$ |
mean free path of air particles |
$\mathrm{m}$ |
$l$ |
length key |
$\mathrm{mm}$ |
$l_t$ |
tolerance of key length |
$\mathrm{mm}$ |
$m$ |
the mass of the body |
$\mathrm{kg}$ |
$m_1$ |
the mass of the body 1 |
$\mathrm{kg}$ |
$m_2$ |
the mass of the body 2 |
$\mathrm{kg}$ |
$n$ |
air number density |
$\mathrm{m^{-3}}$ |
$n$ |
coefficient $ n $ |
$\mathrm{ }$ |
$n^o$ |
coefficient $ n^o $ |
$\mathrm{ }$ |
$p$ |
the water pressure |
$\mathrm{Pa}$ |
$p$ |
momentum |
$\mathrm{kg\cdot m/s}$ |
$p^*$ |
pressure reducing quantity |
$\mathrm{Pa}$ |
$p_b$ |
lower limit pressure |
$\mathrm{Pa}$ |
$p_{air}$ |
atmospheric pressure air |
$\mathrm{Pa}$ |
$r$ |
nominal earth's radius |
$\mathrm{m}$ |
$r$ |
radius of curvature of hole, arc, notch |
$\mathrm{mm}$ |
$r$ |
the distance between the centers of the masses |
$\mathrm{m}$ |
$r$ |
position vector |
$\mathrm{m}$ |
$r$ |
distance from the axis of rotation |
$\mathrm{m}$ |
$r_1$ |
max. rounding the key |
$\mathrm{mm}$ |
$r_2$ |
groove rounding |
$\mathrm{mm}$ |
$s$ |
specific entropy |
$\mathrm{J\cdot kg^{-1}\cdot K^{-1}}$ |
$s$ |
distance |
$\mathrm{m}$ |
$t$ |
depth in the shaft |
$\mathrm{mm}$ |
$t$ |
depth of groove, notch |
$\mathrm{mm}$ |
$t$ |
temperature |
$\mathrm{°C}$ |
$t_1$ |
depth in the hub |
$\mathrm{mm}$ |
$t_t$ |
tolerance of the groove height in the shaft |
$\mathrm{mm}$ |
$t_{1t}$ |
tolerance of the groove height in the hub |
$\mathrm{mm}$ |
$u$ |
specific internal energy |
$\mathrm{J\cdot kg^{-1}}$ |
$v$ |
velocity |
$\mathrm{m/s}$ |
$v$ |
velocity of sound |
$\mathrm{m/s}$ |
$v̄$ |
mean air-particle speed |
$\mathrm{m/s}$ |
$w$ |
speed of sound |
$\mathrm{m\cdot s^{-1}}$ |
$x$ |
deformation |
$\mathrm{m}$ |
$Δs$ |
distance |
$\mathrm{m}$ |
$Δt$ |
time |
$\mathrm{s}$ |
$Δv$ |
velocity |
$\mathrm{m/s}$ |
$Δθ$ |
angle |
$\mathrm{rad}$ |
$Δω$ |
angular velocity |
$\mathrm{rad/s}$ |
$α$ |
angular acceleration |
$\mathrm{rad/s^2}$ |
$α_p$ |
relative pressure coefficient |
$\mathrm{K^{-1}}$ |
$α_ν$ |
isobaric cubic expansion coefficient |
$\mathrm{K^{-1}}$ |
$β$ |
transformed pressure |
$\mathrm{ }$ |
$β$ |
coefficient for buckling |
$\mathrm{ }$ |
$β$ |
temperature gradient $ β $ |
$\mathrm{K\cdot m^{-1}}$ |
$β_p$ |
isothermal stress coefficient |
$\mathrm{kg\cdot m^{-3}}$ |
$β_s$ |
Sutherland's empirical coefficients $ β_s $ |
$\mathrm{kg\cdot m^{-1}\cdot s^{-1}\cdot K^{-1/2}}$ |
$γ$ |
dimensionless Gibbs free energy |
$\mathrm{ }$ |
$γ^o$ |
ideal-gas part |
$\mathrm{ }$ |
$γ^o_{ππ}$ |
second partial derivative of $ γ^o $ with respect to $ π $ |
$\mathrm{ }$ |
$γ^o_{πτ}$ |
cross derivative of $ γ^o $ with respect to $ π $ and temperature $ τ $ |
$\mathrm{ }$ |
$γ^o_{ττ}$ |
second partial derivative of $ γ^o $ with respect to $ τ $ |
$\mathrm{ }$ |
$γ^o_π$ |
derivative of $ γ^o $ with respect to the dimensionless pressure $ π $ |
$\mathrm{ }$ |
$γ^o_τ$ |
partial derivative of $ γ^o $ with respect to $ τ $ |
$\mathrm{ }$ |
$γ^r$ |
residual part |
$\mathrm{ }$ |
$γ^r_{ππ}$ |
second partial derivative of $ γ^r $ with respect to $ π $ |
$\mathrm{ }$ |
$γ^r_{πτ}$ |
cross derivative of $ γ^r $ with respect to $ π $ and temperature $ τ $ |
$\mathrm{ }$ |
$γ^r_{ττ}$ |
second partial derivative of $ γ^r $ with respect to $ τ $ |
$\mathrm{ }$ |
$γ^r_π$ |
derivative of $ γ^r $ with respect to the dimensionless pressure $ π $ |
$\mathrm{ }$ |
$γ^r_τ$ |
partial derivative of $ γ^r $ with respect to $ τ $ |
$\mathrm{ }$ |
$γ_{air}$ |
specific weight air |
$\mathrm{kg\cdot m^{-2}\cdot s^{-2}}$ |
$γ_{ππ}$ |
second partial derivative of $ γ $ with respect to $ π $ |
$\mathrm{ }$ |
$γ_{πτ}$ |
cross derivative of $ γ $ with respect to $ π $ and temperature $ τ $ |
$\mathrm{ }$ |
$γ_{ττ}$ |
second partial derivative of $ γ $ with respect to $ τ $ |
$\mathrm{ }$ |
$γ_π$ |
derivative of $ γ $ with respect to the dimensionless pressure $ π $ |
$\mathrm{ }$ |
$γ_τ$ |
partial derivative of $ γ $ with respect to $ τ $ |
$\mathrm{ }$ |
$δ$ |
reduced density |
$\mathrm{ }$ |
$ζ$ |
loss coefficient |
$\mathrm{ }$ |
$η$ |
eccentricity parameter |
$\mathrm{ }$ |
$θ$ |
reduced temperature |
$\mathrm{ }$ |
$θ$ |
angle |
$\mathrm{rad}$ |
$θ$ |
transformed temperature |
$\mathrm{ }$ |
$κ$ |
adiabatic index |
$\mathrm{ }$ |
$κ_T$ |
isothermal compressibility |
$\mathrm{Pa^{-1}}$ |
$λ$ |
thermal conductivity |
$\mathrm{W\cdot m^{-1}\cdot K^{-1}}$ |
$λ$ |
slenderness ratio |
$\mathrm{ }$ |
$μ$ |
dynamic viscosity |
$\mathrm{kg\cdot m^{-1}\cdot s^{-1}}$ |
$μ$ |
discharge coefficient |
$\mathrm{ }$ |
$μ$ |
coefficient of friction |
$\mathrm{ }$ |
$ν$ |
kinematic viscosity |
$\mathrm{m^2\cdot s^{-1}}$ |
$ν$ |
Poisson's ratio |
$\mathrm{ }$ |
$ν$ |
specific volume |
$\mathrm{m^3\cdot kg^{-1}}$ |
$π$ |
reduced pressure |
$\mathrm{ }$ |
$ρ$ |
mass density |
$\mathrm{kg\cdot m^{-3}}$ |
$ρ^*$ |
mass density reducing quantity |
$\mathrm{kg\cdot m^{-3}}$ |
$ρ_{air}$ |
density air |
$\mathrm{kg/m^3}$ |
$σ$ |
effective collision diameter of an air molecule |
$\mathrm{m}$ |
$σ$ |
normal stress |
$\mathrm{MPa}$ |
$σ_{all-A}$ |
allowable axial stress |
$\mathrm{MPa}$ |
$σ_{all-B}$ |
allowable bending stress |
$\mathrm{MPa}$ |
$σ_{all-C}$ |
allowable combined stress |
$\mathrm{MPa}$ |
$σ_{max}$ |
maximum normal stress |
$\mathrm{MPa}$ |
$σ_{nom}$ |
nominal or reference normal stress |
$\mathrm{MPa}$ |
$τ$ |
inverse reduced temperature |
$\mathrm{ }$ |
$τ_{all-S}$ |
allowable shear stress |
$\mathrm{MPa}$ |
$τ_{max}$ |
maximum shear stress |
$\mathrm{MPa}$ |
$τ_{nom}$ |
nominal or reference shear stress |
$\mathrm{MPa}$ |
$φ$ |
latitude |
$\mathrm{°}$ |
$φ$ |
dimensionless Helmholtz free energy |
$\mathrm{ }$ |
$φ_{δδ}$ |
second partial derivative of $ φ $ with respect to $ δ $ |
$\mathrm{ }$ |
$φ_{δτ}$ |
cross derivative of $ φ $ with respect to $ δ $ and temperature $ τ $ |
$\mathrm{ }$ |
$φ_{ττ}$ |
second partial derivative of $ φ $ with respect to $ τ $ |
$\mathrm{ }$ |
$φ_δ$ |
derivative of $ φ $ with respect to the dimensionless density $ δ $ |
$\mathrm{ }$ |
$φ_τ$ |
partial derivative of $ φ $ with respect to $ τ $ |
$\mathrm{ }$ |
$ω$ |
air-particle collision frequency |
$\mathrm{Hz}$ |
$ω$ |
angular velocity |
$\mathrm{rad/s}$ |