Menu

Water hammer

Values for calculation

$ Q_{max} $ $ \mathrm{m^3/s} $
$ D $ $ \mathrm{mm} $
$ D_p $ $ \mathrm{mm} $
$ L $ $ \mathrm{m} $
$ H $ $ \mathrm{m} $
$ g $ $ \mathrm{m/s^2} $
$ T $ $ \mathrm{°C} $
$ ρ $ $ \mathrm{kg/m^3} $
$ w $ $ \mathrm{m\cdot\ s^{-1}} $
$ E $ $ \mathrm{Pa} $
$ ζ $
$ c_{ef} $
$ t $ $ \mathrm{s} $
$ e $ $ \mathrm{mm} $

Calculation

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Theoretical pressure in the valve at full opening

$$Δ_h=\cfrac{v_{max}^2}{2\cdot g}\cdot \left(ζ+1\right)$$

Pressure parameter

$$p=\cfrac{Δ_h}{H}$$

$$0 < p \le 1$$

Effective closing time

$$t_{ef}=t\cdot c_{ef}$$

Volume elastic modulus

$$K=w^2\cdot ρ$$

Speed pressure waves in the pipe

$$a=\cfrac{w}{\sqrt{1+\cfrac{D_p}{e}\cdot\cfrac{K}{E}}}$$

Speed in the pipe

$$v_p=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D_p^2}$$

Water hammer

$\text{if }\ t_{ef}\geq \cfrac{2\cdot L}{a}$
$$ΔP=\cfrac{L\cdot v_{max}}{t_{ef}\cdot g}$$
$\text{else}$
$$ΔP=\cfrac{a\cdot v_{max}}{g}$$