Menu

Multi-hole cage

Cage L d D c
Cage
Developed view of the cage d d d d L 1 2 3 4 min(3d)
Developed view of the cage

Values for calculation

$ Q_{max} $ $ \mathrm{m^3/s} $
$ D $ $ \mathrm{mm} $
$ D_c $ $ \mathrm{mm} $
$ P_1 $ $ \mathrm{Pa} $
$ P_2 $ $ \mathrm{Pa} $
$ T $ $ \mathrm{°C} $
$ ρ $ $ \mathrm{kg/m^3} $
$ P_{SV} $ $ \mathrm{Pa} $
$ μ $
$ d $ $ \mathrm{mm} $
$ L $ $ \mathrm{mm} $

Calculation

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Allowable maximum number of holes in one row

$$n_{max}=\left\lfloor\cfrac{π\cdot D_c}{\sqrt{\left(9\cdot d\right)^2-\left(3\cdot d\right)^2}}\right\rfloor$$

Number of rows

$$i=\left\lfloor\cfrac{L}{d}\right\rfloor$$

The flow area

$$A=\cfrac{Q_{max}}{μ\cdot \sqrt{2\cdot \cfrac{P_1-P_2}{ρ}}}$$

Total number of holes

$$I_{total}=\left\lfloor\cfrac{4\cdot 10^6 \cdot A}{π\cdot d^2}\right\rfloor$$
Stroke from open position
Reduced free flow area in the throttle control system
Number of holes
$ s $ $ f_r $ $ I $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ f_r\ [-] $
No data
$ s\ [\mathrm{\%}] $
Reduced free flow area in the throttle control system

$\text{if }\ \text{flow }$$\text{characteristic}= \text{linear}$
$$f_r=1-\cfrac{s}{100}$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{modified linear}\wedge 1-\cfrac{s}{100}\le 0.5$
$$f_r=\left(2\cdot\left(1-\cfrac{s}{100}\right)\right)^{2}\cdot 0.5$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{modified linear}$
$$f_r=\left(\left(1-\cfrac{s}{100}-0.5\right)\cdot 2\cdot\left(2-\left(1-\cfrac{s}{100}-0.5\right)\cdot 2\right)\right)\cdot0.5+0.5$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{parabolic}$
$$f_r=\left(1-\cfrac{s}{100}\right)^{2}$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{equal percentage}\wedge 1-\cfrac{s}{100}= 0$
$$f_r=0$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{equal percentage}\wedge 1-\cfrac{s}{100}= 1$
$$f_r=1$$
$\text{else if }\ \text{flow }$$\text{characteristic}= \text{equal percentage}$
$$f_r=\cfrac{0.25}{100}\cdot\exp{1}^{6\cdot\left( 1-\cfrac{s}{100}\right)}$$
$\text{else}$
$$f_r=\left(1-\cfrac{s}{100}\right)\cdot\left(2-\left(1-\cfrac{s}{100}\right)\right)$$

Requirements

$$ \cfrac{P_1-P_2}{0.6\cdot\left(P_1-P_{SV}\right)}\le1 $$ $$ \cfrac{4\cdot 10^6\cdot A}{π\cdot D^2}< 0.5 $$ $$ \cfrac{D}{50}\geq d $$ $$ n_{max}\geq \max\left(I\right) $$