Menu

Speed of sound

Values for calculation

$ γ_π $
$ τ $
$ γ_{πτ} $
$ γ_{ττ} $
$ γ_{ππ} $
$ R $ $ \mathrm{J\cdot\ kg^{-1}\cdot\ K^{-1}} $
$ T $ $ \mathrm{°C} $
$ π $
$ γ^r_π $
$ γ^r_{ππ} $
$ γ^r_{πτ} $
$ γ^o_{ττ} $
$ γ^r_{ττ} $
$ δ $
$ φ_δ $
$ φ_{δδ} $
$ φ_{δτ} $
$ φ_{ττ} $
$ \text{Region} $

Calculation

Speed of sound

$\text{if }\ \text{Region}= 1$
$$w=\sqrt{\left(\cfrac{γ_π^2}{\cfrac{\left(γ_π-τ\cdot γ_{πτ}\right)^2}{τ^2\cdot γ_{ττ}}-γ_{ππ}}\right)\cdot R\cdot\left(T+273.15\right)}$$
$\text{else if }\ \text{Region}= 2$
$$w=\sqrt{\cfrac{1+2\cdot π\cdot γ^r_π+π^2\cdot {γ^r_π}^2}{\left(1-π^2\cdot γ^r_{ππ}\right)+\cfrac{\left(1+π\cdot γ^r_π-τ\cdot π\cdot γ^r_{πτ}\right)^2}{τ^2\cdot\left(γ^o_{ττ}+γ^r_{ττ}\right)}}\cdot R\cdot\left(T+273.15\right)}$$
$\text{else if }\ \text{Region}= 3$
$$w=\sqrt{\left(2\cdot δ\cdot φ_δ+δ^2\cdot φ_{δδ}-\cfrac{\left(δ\cdot φ_δ-δ\cdot τ\cdot φ_{δτ}\right)^2}{τ^2\cdot φ_{ττ}}\right)\cdot R\cdot\left(T+273.15\right)}$$
$\text{else if }\ \text{Region}= 5$
$$w=\sqrt{\cfrac{1+2\cdot π\cdot γ^r_π+π^2\cdot {γ^r_π}^2}{\left(1-π^2\cdot γ^r_{ππ}\right)+\cfrac{\left(1+π\cdot γ^r_π-τ\cdot π\cdot γ^r_{πτ}\right)^2}{τ^2\cdot\left(γ^o_{ττ}+γ^r_{ττ}\right)}}\cdot R\cdot\left(T+273.15\right)}$$
$\text{else}$
$$w=0$$