Menu

Hydrodynamic calculation Butterfly valve lenticular disc $s/D=0.26$

Butterfly valve (lenticular disc s/D=0.26) L 0.5D D Q max Q air s R +M H +F y +F x +F 0.5D +F by +F bx α Φ
Butterfly valve (lenticular disc $s/D=0.26$)

Values for calculation

$D$ $\mathrm{mm}$
$s$ $\mathrm{mm}$
$R$ $\mathrm{mm}$
$Q_{max}$ $\mathrm{m^3/s}$
$H$ $\mathrm{m}$
$g$ $\mathrm{m/s^2}$
$T$ $\mathrm{°C}$
$ρ$ $\mathrm{kg/m^3}$
$P_{SV}$ $\mathrm{Pa}$
$ΔP$ $\mathrm{m}$
$h$ $\mathrm{m}$
$ρ_{air}$ $\mathrm{kg/m^3}$
$p_{air}$ $\mathrm{Pa}$
$n$
$t$ $\mathrm{s}$
$L$ $\mathrm{m}$

Calculation

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Theoretical pressure in the valve at full opening

$$Δ_h=\cfrac{v_{max}^2}{2\cdot g}\cdot \left({\min\left(ζ\right)}+1\right)$$

Pressure parameter

$$p=\cfrac{Δ_h}{H}$$

$$0 < p \le 1$$

Effective closing time factor

$$c_{ef}=0$$

$$c_{ef}\le 1$$

Under-pressure behind the valve

$$P_{u}=\max\left(-\cfrac{L\cdot v_{max}}{g\cdot t\cdot c_{ef}}, -\cfrac{p_{air}}{ρ\cdot g}\right)$$