Menu

The flow characteristic (hydraulic cylinder)

The flow characteristic (hydraulic cylinder) r a b β α r a b β T L S S a 2 a 1 γ δ α
The flow characteristic (hydraulic cylinder)

Values for calculation

$ α $ $ \mathrm{°} $
$ β $ $ \mathrm{°} $
$ r $ $ \mathrm{mm} $
$ a $ $ \mathrm{mm} $
$ b $ $ \mathrm{mm} $
$ L_d $ $ \mathrm{\%} $
$ T_c $ $ \mathrm{s} $
$ T_d $ $ \mathrm{s} $
$ K_{Q-valve}[1] $
$ K_{Q-valve}[2] $
$ K_{Q-valve}[3] $
$ K_{Q-valve}[4] $
$ K_{Q-valve}[5] $
$ K_{Q-valve}[6] $
$ K_{Q-valve}[7] $
$ K_{Q-valve}[8] $
$ K_{Q-valve}[9] $
$ K_{Q-valve}[10] $

Calculation

Stroke

$$S_{max}=\sqrt{\left(b-r\cdot\sin{\left(α+β\right)}\right)^2+\left(a-r\cdot\cos{\left(α+β\right)}\right)^2}-\sqrt{\left(b-r\cdot\sin{\left(α\right)}\right)^2+\left(a-r\cdot\cos{\left(α\right)}\right)^2}$$

Distance between the axis of rotation of the valve and the axis of the hydraulic cylinder

$$L=\sqrt{a^2+b^2}$$

Requirements

$$ α\geq\tan^{-1}{\cfrac{b}{a}}\cdot\cfrac{180}{π} $$ $$ β\le\tan^{-1}{\cfrac{b}{a}}\cdot\cfrac{180}{π}+180-α $$ $$ 0.8\cdot T_c\geq T_d $$
Stroke from open position
The distance between the axis of the hydraulic cylinder and the axis of the eye of the hydraulic cylinder
Height $ T $
The angle between the axis of the hydraulic cylinder and the imaginary line between the axis of the closure and the pivot axis of the hydraulic cylinder
$ s $ $ S_S $ $ T $ $ γ $
$ \mathrm{\%} $ $ \mathrm{mm} $ $ \mathrm{mm} $ $ \mathrm{°} $
No data

$ S_S\ [\mathrm{mm}] $
No data
$ s\ [\mathrm{\%}] $
The distance between the axis of the hydraulic cylinder and the axis of the eye of the hydraulic cylinder

$$S_S=S_{max}-\cfrac{S_{max}}{100}\cdot s+\sqrt{\left(b-r\cdot\sin{\left(α\right)}\right)^2+\left(a-r\cdot\cos{\left(α\right)}\right)^2}$$

$ T\ [\mathrm{mm}] $
No data
$ s\ [\mathrm{\%}] $
Height $ T $

$$T=\sqrt{S_S^2-\left(\cfrac{L^2-r^2+S_S^2}{2\cdot L}\right)^2}$$

$ γ\ [\mathrm{°}] $
No data
$ s\ [\mathrm{\%}] $
The angle between the axis of the hydraulic cylinder and the imaginary line between the axis of the closure and the pivot axis of the hydraulic cylinder

$$γ=\sin^{-1}{\cfrac{T}{S_S}}\cdot\cfrac{180}{π}$$
Stroke from open position
Length $ a_2 $
Length $ a_1 $
The angle between the lever axis and the imaginary line between the valve axis and the pivot axis of the hydraulic cylinder
Angle rotation of the rocking motion
$ s $ $ a_2 $ $ a_1 $ $ δ $ $ β_S $
$ \mathrm{\%} $ $ \mathrm{mm} $ $ \mathrm{mm} $ $ \mathrm{°} $ $ \mathrm{°} $
No data

$ a_2\ [\mathrm{mm}] $
No data
$ s\ [\mathrm{\%}] $
Length $ a_2 $

$$a_2=S_S\cdot\cos{γ}$$

$ a_1\ [\mathrm{mm}] $
No data
$ s\ [\mathrm{\%}] $
Length $ a_1 $

$$a_1=L-a_2$$

$ δ\ [\mathrm{°}] $
No data
$ s\ [\mathrm{\%}] $
The angle between the lever axis and the imaginary line between the valve axis and the pivot axis of the hydraulic cylinder

$\text{if }\ a_1\le0$
$$δ=90+\cos^{-1}{\cfrac{T}{r}}\cdot\cfrac{180}{π}$$
$\text{else}$
$$δ=90-\cos^{-1}{\cfrac{T}{r}}\cdot\cfrac{180}{π}$$

$ β_S\ [\mathrm{°}] $
No data
$ s\ [\mathrm{\%}] $
Angle rotation of the rocking motion

$$β_S=δ_{[0]}-δ$$
Stroke from open position
Flow coefficient $ K_{Q-valve} $
Flow coefficient $ K_{Q-hydraulic-cylinder} $
$ s $ $ K_{Q-valve} $ $ K_{Q-hydraulic-cylinder} $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_{Q-valve}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient $ K_{Q-valve} $

$ K_{Q-hydraulic-cylinder}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient $ K_{Q-hydraulic-cylinder} $

$\text{if }\ s=0$
$$K_{Q-hydraulic-cylinder}=K_{Q-valve}$$
$\text{else if }\ s=100$
$$K_{Q-hydraulic-cylinder}=K_{Q-valve}$$
$\text{else}$
$$K_{Q-hydraulic-cylinder}=K_{Q-valve}-\cfrac{K_{Q-valve}-K_{Q-valve}[i+1]}{β/10}\cdot\left(β_S-\cfrac{β}{100}\cdot s\right)$$
Time value
Percentage of hydraulic cylinder stroke at a given time
Flow coefficient
$ T_s $ $ S_T $ $ K_Q $
$ \mathrm{s} $ $ \mathrm{\%} $ $ \mathrm{\ } $
No data

$ S_T\ [\mathrm{\%}] $
No data
$ T_s\ [\mathrm{s}] $
Percentage of hydraulic cylinder stroke at a given time

$\text{if }\ T_s<\left(T_c-T_d\right)$
$$S_T=\cfrac{100-L_d}{T_c-T_d}\cdot T_s$$
$\text{else}$
$$S_T=100-L_d+\cfrac{L_d}{T_d}\cdot\left(T_s-T_c+T_d\right)$$

$ K_Q\ [-] $
No data
$ T_s\ [\mathrm{s}] $
Flow coefficient

$\text{if }\ s=0$
$$K_Q=K_{Q-hydraulic-cylinder}$$
$\text{else if }\ s=100$
$$K_Q=K_{Q-hydraulic-cylinder}$$
$\text{else}$
$$K_Q=K_{Q-hydraulic-cylinder}-\cfrac{K_{Q-hydraulic-cylinder}-K_{Q-hydraulic-cylinder}[i+1]}{10}\cdot\left(S_T-s\right)$$
On this page