Processing math: 0%
Menu

Projected discharge from a conical diffuser

Projected discharge from a conical diffuser d d E α
Projected discharge from a conical diffuser

Values for calculation

d \mathrm{mm}
d_E \mathrm{mm}
α \mathrm{°}
f

Calculation

Diameter ratio

β=\cfrac{d}{d_E}

Loss coefficient

\text{if }\ α\le 20
ζ=8.3\cdot\left[\tan{\left(α/2\right)}\right]^{1.75}\cdot\left(1-β^2\right)^2+\cfrac{f\cdot\left(1-β^4\right)}{8\cdot\sin{\left(α/2\right)}}+β^4
\text{else if }\ α\le 60\wedgeβ<0.5
ζ=\left\{1.366\cdot\sin{\left[\cfrac{2\cdot π\cdot\left(α-15°\right)}{180}\right]}^{1/2}-0.17-3.28\cdot\left(0.0625-β^4\right)\cdot\sqrt{\cfrac{α-20°}{40°}}\right\}\cdot\left(1-β^2\right)^2+\cfrac{f\cdot\left(1-β^4\right)}{8\cdot\sin{\left(α/2\right)}}+β^4
\text{else if }\ α\le 60
ζ=\left\{1.366\cdot\sin{\left[\cfrac{2\cdot π\cdot\left(α-15°\right)}{180}\right]}^{1/2}-0.17\right\}\cdot\left(1-β^2\right)^2+\cfrac{f\cdot\left(1-β^4\right)}{8\cdot\sin{\left(α/2\right)}}+β^4
\text{else if }\ α\le 180\wedgeβ<0.5
ζ=\left[1.205-3.28\cdot\left(0.0625-β^4\right)-12.8\cdot β^6\cdot\sqrt{\cfrac{α-60°}{120°}}\right]\cdot\left(1-β^2\right)^2+β^4
\text{else}
ζ=\left(1.205-0.2\cdot\sqrt{\cfrac{α-60°}{120°}}\right)\cdot\left(1-β^2\right)^2+β^4

Discharge coefficient

μ=\cfrac{1}{\sqrt{ζ+1}}