Menu

Hydrodynamic calculation Howell-Jet valve

Howell-Jet valve Q max D a b c e f g h i j k l m n o p r q t ELLIPSE s VANES 33° B u 8 d 1 d v w x 10° y VANES ALTERNATE AT 45° DETAIL "B" 33° 40° z +F -F D needle
Howell-Jet valve

Values for calculation

$ D $ $ \mathrm{mm} $
$ D_{needle} $ $ \mathrm{mm} $
$ d $ $ \mathrm{mm} $
$ a $ $ \mathrm{mm} $
$ b $ $ \mathrm{mm} $
$ c $ $ \mathrm{mm} $
$ e $ $ \mathrm{mm} $
$ f $ $ \mathrm{mm} $
$ g $ $ \mathrm{mm} $
$ h $ $ \mathrm{mm} $
$ i $ $ \mathrm{mm} $
$ j $ $ \mathrm{mm} $
$ k $ $ \mathrm{mm} $
$ l $ $ \mathrm{mm} $
$ m $ $ \mathrm{mm} $
$ n $ $ \mathrm{mm} $
$ o $ $ \mathrm{mm} $
$ p $ $ \mathrm{mm} $
$ q $ $ \mathrm{mm} $
$ r $ $ \mathrm{mm} $
$ t $ $ \mathrm{mm} $
$ u $ $ \mathrm{mm} $
$ v $ $ \mathrm{mm} $
$ w $ $ \mathrm{mm} $
$ x $ $ \mathrm{mm} $
$ y $ $ \mathrm{mm} $
$ z $ $ \mathrm{mm} $
$ d_1 $ $ \mathrm{mm} $
$ H $ $ \mathrm{m} $
$ g $ $ \mathrm{m/s^2} $
$ T $ $ \mathrm{°C} $
$ ρ $ $ \mathrm{kg/m^3} $
$ P_{SV} $ $ \mathrm{Pa} $
$ ΔP $ $ \mathrm{m} $
$ Σζ $
$ h $ $ \mathrm{m} $
$ ρ_{air} $ $ \mathrm{kg/m^3} $
$ p_{air} $ $ \mathrm{Pa} $

Calculation

Flow

$$Q_{max}=\cfrac{1}{\sqrt{1+Σζ+\min\left(ζ\right)}}\cdot\cfrac{π\cdot D^2}{4\cdot 10^6}\cdot\sqrt{2\cdot g\cdot H}$$

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Theoretical pressure in the valve at full opening

$$Δ_h=\cfrac{v_{max}^2}{2\cdot g}\cdot \left({\min\left(ζ\right)}+1\right)$$

Pressure parameter

$$p=\cfrac{Δ_h}{H}$$

$$0 < p \le 1$$
Stroke from open position
Flow coefficient
Coefficient of hydraulic force on a needle in the axis x
Coefficient of hydraulic force on a needle upstream in the axis x
Coefficient of hydraulic force on body in the axis x
$ s $ $ K_Q $ $ K_x $ $ K_{x-upstream} $ $ K_{bx} $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_x\ [-] $
$ K_{x-upstream}\ [-] $
$ K_{bx}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficient of force

$ K_Q\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient

Stroke from open position
Loss coefficient
Reduced free flow area in the throttle control system
Relative flow
Flow of water in the pipeline
Water velocity in pipeline
$ s $ $ ζ $ $ f_r $ $ Q_p $ $ Q $ $ v $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{m^3/s} $ $ \mathrm{m/s} $
No data

$ ζ\ [-] $
No data
$ s\ [\mathrm{\%}] $
Loss coefficient

$$ζ=\cfrac{1-K_Q^2}{K_Q^2}$$

$ f_r\ [-] $
$ Q_p\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficients

$$f_r=\cfrac{K_Q}{K_{Qmax}}$$
$$Q_p=\cfrac{f_r}{\sqrt{p+f_r^2\cdot \left(1-p\right)}}$$

$ Q\ [\mathrm{m^3/s}] $
$ v\ [\mathrm{m/s}] $
No data
$ s\ [\mathrm{\%}] $
Flow and speed of water in the pipeline

$$Q=Q_p\cdot Q_{max}$$
$$v=Q_p\cdot v_{max}$$
Stroke from open position
Loss of pressure on the valve
Pressure on the valve
Cavitation number
$ s $ $ H_L $ $ H_v $ $ σ $
$ \mathrm{\%} $ $ \mathrm{m} $ $ \mathrm{m} $ $ \mathrm{\ } $
No data

$ H_L\ [\mathrm{m}] $
$ H_v\ [\mathrm{m}] $
No data
$ s\ [\mathrm{\%}] $
Loss of height on valve and pressure height on Howell-Jet valve

$$H_L=\cfrac{v^2}{2\cdot g}\cdot ζ$$
$$H_v=H_L+\cfrac{v^2}{2\cdot g}+\left(1-Q_p\right)\cdot ΔP$$

$ σ\ [-] $
No data
$ s\ [\mathrm{\%}] $
Cavitation number

$$σ=\cfrac{\cfrac{p_{air}-P_{SV}}{ρ\cdot g}+H-H_L}{H_v}$$
Stroke from open position
Forces on the needle
The force at the valve axis x
$ s $ $ F_x $ $ F_{bx} $
$ \mathrm{\%} $ $ \mathrm{kN} $ $ \mathrm{kN} $
No data

$ F_x\ [\mathrm{kN}] $
No data
$ s\ [\mathrm{\%}] $
Forces on the needle

$$F_x=\cfrac{π\cdot ρ\cdot g\cdot H_v}{4\cdot 10^9}\cdot \left(D^2\cdot K_x-D^2\cdot\left(1.1162^2-0.04\right)\cdot K_{x-upstream}+\left(D_{needle}^2-d^2\right)\cdot K_{x-upstream}\right)$$

$ F_{bx}\ [\mathrm{kN}] $
No data
$ s\ [\mathrm{\%}] $
The force at the valve axis x

$\text{if }\ α=90$
$$F_{bx}=\cfrac{π\cdot D_s^2}{4\cdot 10^9}\cdot ρ\cdot g\cdot H_v\cdot K_{bx}$$
$\text{else}$
$$F_{bx}=\cfrac{π\cdot D^2}{4\cdot 10^9}\cdot ρ\cdot g\cdot H_v\cdot K_{bx}$$