One |
$$1$$ |
1 |
M_ONE |
Two |
$$2$$ |
2 |
M_TWO |
One half |
$$1/2$$ |
0.5 |
M_ONE_HALF |
Ludolph's number |
$$π$$ |
3.1415926535898 |
M_PI |
Tau |
$$τ=2\cdot π$$ |
6.2831853071796 |
M_TAU |
Euler's number |
$$e=\sum_{n=0}^{\infty}\cfrac{1}{n!}=1+\cfrac{1}{1}+\cfrac{1}{1\cdot 2}+\cfrac{1}{1\cdot 2\cdot 3}+\cdots$$ |
2.718281828459 |
M_E |
Euler's constant |
$$γ=\lim_{n\rightarrow\infty}\left(-\log{n}+\sum_{k=1}^{n}\right)\cfrac{1}{k}$$ |
0.57721566490153 |
M_EULER |
Apéry's constant |
$$ζ(3)=\sum_{n=1}^{\infty}\cfrac{1}{n^3}=1+\cfrac{1}{2^3}+\cfrac{1}{3^3}+\cfrac{1}{4^3}+\cfrac{1}{5^3}+\cdots$$ |
1.2020569031596 |
M_APERY |
Catalan's constant |
$$G=\sum_{n=0}^{\infty}\cfrac{\left(-1\right)^n}{\left(2n+1\right)^2}=\cfrac{1}{1^2}-\cfrac{1}{3^2}+\cfrac{1}{5^2}-\cfrac{1}{7^2}+\cfrac{1}{9^2}-\cdots$$ |
0.91596559417722 |
M_CATALAN |
Feigenbaum constant α |
$$α$$ |
2.5029078750959 |
M_FEIGENBAUM_ALPHA |
Feigenbaum constant δ |
$$δ$$ |
4.669201609103 |
M_FEIGENBAUM_DELTA |
Lemniscate constant |
$$ϖ=2\int_{0}^{1}\cfrac{\text{d}t}{\sqrt{1-t^4}}$$ |
2.6220575542921 |
M_LEMNISCATE |
Glaisher–Kinkelin constant |
$$A$$ |
1.2824271291006 |
M_GLAISHER |
Khinchin's constant |
$$K_0=\lim_{n\rightarrow\infty}\left(a_1a_2\ldots a_n\right)^{1/n}$$ |
2.6854520010653 |
M_KHINCHIN |
Golden Ratio |
$$φ=\cfrac{1+\sqrt{5}}{2}$$ |
1.6180339887499 |
M_GOLDEN_RATIO |
Silver Ratio |
$$δ_S=\sqrt{2}+1$$ |
2.4142135623731 |
M_SILVER_RATIO |
Supergolden Ratio |
$$ψ=\cfrac{1+\sqrt[3]{\cfrac{29+3\cdot\sqrt{93}}{2}}+\sqrt[3]{\cfrac{29-3\cdot\sqrt{93}}{2}}}{3}$$ |
1.4655712318768 |
M_SUPERGOLDEN_RATIO |
Connective constant |
$$μ=\sqrt{2+\sqrt{2}}$$ |
1.8477590650226 |
M_CONNECTIVE |
Kepler–Bouwkamp constant |
$$K'=\prod_{n=3}^{\infty}\cos\left(\cfrac{π}{n}\right)=\cos\left(\cfrac{π}{3}\right)\cos\left(\cfrac{π}{4}\right)\cos\left(\cfrac{π}{5}\right)\cdots$$ |
0.1149420448533 |
M_KEPLER_BOUWKAMP |
Erdős–Borwein constant |
$$E=\sum_{n=1}^{\infty}\cfrac{1}{2^n-1}=\cfrac{1}{1}+\cfrac{1}{3}+\cfrac{1}{7}+\cfrac{1}{15}\cdots$$ |
1.6066951524153 |
M_ERDOS_BORWEIN |
Omega constant |
$$Ω=\cfrac{1}{π}\int_{0}^{π}\log\left(1+\cfrac{\sin t}{t}e^{t \cot t}\right)dt$$ |
0.56714329040978 |
M_OMEGA |
Gauss's constant |
$$G=\cfrac{1}{\text{agm}\left(1, \sqrt{2}\right)}=\cfrac{1}{4π}\sqrt{\cfrac{2}{π}}Γ\left(\cfrac{1}{4}\right)^2=\cfrac{ϖ}{π}$$ |
0.83462684167407 |
M_GAUSS |
Second Hermite constant |
$$γ_2=\cfrac{2}{\sqrt{3}}$$ |
1.1547005383793 |
M_SECOND_HERMITE |
Liouville's constant |
$$L=\sum_{n=1}^{\infty}\cfrac{1}{10^{n!}}=\cfrac{1}{10^{1!}}+\cfrac{1}{10^{2!}}+\cfrac{1}{10^{3!}}+\cfrac{1}{10^{4!}}+\cdots$$ |
0.110001 |
M_LIOUVILLE |
Ramanujan's constant |
$${e}^{π\cdot\sqrt{163}}$$ |
2.6253741264077E+17 |
M_RAMANUJAN |
Dottie number |
$$D$$ |
0.73908513321516 |
M_DOTTIE |
Meissel-Mertens constant |
$$M=\lim_{n\rightarrow\infty}\left(\sum_{p\le n}\cfrac{1}{p}-\ln\left(\ln n\right)\right)=γ+\sum_{p}\left(\ln\left(1-\cfrac{1}{p}\right)+\cfrac{1}{p}\right)$$ |
0.26149721284764 |
M_MEISSEL_MERTENS |
Universal parabolic constant |
$$ \ln{\left(1+\sqrt{2}\right)}+\sqrt{2}$$ |
2.2955871493926 |
M_UNIVERSAL_PARABOLIC |
Cahen's constant |
$$C=\sum_{k=1}^{\infty}\cfrac{\left(-1\right)^k}{s_k-1}=\cfrac{1}{1}-\cfrac{1}{2}+\cfrac{1}{6}-\cfrac{1}{42}+\cfrac{1}{1806}\pm\cdots$$ |
0.64341054628834 |
M_CAHEN |
Gelfond's constant |
$${e}^π$$ |
23.140692632779 |
M_GELFOND |
Gelfond-Schneider constant |
$$2^{\sqrt{2}}$$ |
2.6651441426902 |
M_GELFOND_SCHNEIDER |
Second Favard constant |
$$K_2=\cfrac{π^2}{8}$$ |
1.2337005501362 |
M_SECOND_FAVARD |
Golden angle |
$$g=π\cdot\left(3-\sqrt{5}\right)$$ |
2.3999632297287 |
M_GOLDEN_ANGLE |
Sierpiński's constant |
$$K=π\left(2γ+\ln\cfrac{4π^3}{Γ\left(\cfrac{1}{4}\right)^4}\right)=π\left(2γ+4\ln Γ\left(\cfrac{3}{4}\right)-\ln π\right)=π\left(2\ln2+3\ln π+2γ-4\ln Γ\left(\cfrac{1}{4}\right)\right)$$ |
2.5849817595793 |
M_SIERPINSKI |
Landau-Ramanujan constant |
$$b=\cfrac{1}{\sqrt{2}}\prod_{p\equiv 3\ (\mod 4)}\left(1-\cfrac{1}{p^2}\right)^{-\cfrac{1}{2}}=\cfrac{π}{4}\prod_{p\equiv 1\ (\mod 4)}\left(1-\cfrac{1}{p^2}\right)^{\cfrac{1}{2}}$$ |
0.76422365358922 |
M_LANDAU_RAMANUJAN |
First Nielsen-Ramanujan constant |
$$a_1=\cfrac{π^2}{12}$$ |
0.82246703342411 |
M_FIRST_NIELSEN_RAMANUJAN |
Gieseking constant |
$$G=\cfrac{3\sqrt{3}}{4}\left(1-\sum_{n=0}^{\infty}\cfrac{1}{\left(3n+2\right)^2}+\sum_{n=1}^{\infty}\cfrac{1}{\left(3n+1\right)^2}\right)=\cfrac{\sqrt{3}}{4}\left(\cfrac{ψ_1\left(1/3\right)}{2}-\cfrac{π^2}{3}\right)$$ |
1.0149416064097 |
M_GIESEKING |
Bernstein's constant |
$$β=\lim_{n\rightarrow\infty}2nE_{2n}\left(f\right)$$ |
0.28016949902387 |
M_BERNSTEIN |
Tribonacci constant |
$$\cfrac{1+\sqrt[3]{19+3\cdot\sqrt{33}}+\sqrt[3]{19-3\cdot\sqrt{33}}}{3}$$ |
1.8392867552142 |
M_TRIBONACCI |
Brun's constant |
$$B_2=\sum_{p}\left(\cfrac{1}{p}+\cfrac{1}{p+2}\right)=\left(\cfrac{1}{3}+\cfrac{1}{5}\right)+\left(\cfrac{1}{5}+\cfrac{1}{7}\right)+\left(\cfrac{1}{11}+\cfrac{1}{13}\right)\cdots$$ |
1.902160583104 |
M_BRUN |
Twin primes constant |
$$C_2=\prod_{p\ \text{prime,}\ p\geq3}\left(1-\cfrac{1}{\left(p-1\right)^2}\right)$$ |
0.66016181584687 |
M_TWIN_PRIMES |
Plastic Ratio |
$$ρ=\sqrt[3]{\cfrac{1}{2}+\cfrac{\sqrt{69}}{18}}+\sqrt[3]{\cfrac{1}{2}-\cfrac{\sqrt{69}}{18}}$$ |
1.3247179572447 |
M_PLASTIC_RATIO |
Prouhet-Thue-Morse constant |
$$τ=\sum_{n=0}^{\infty}\cfrac{t_n}{2^{n+1}}=\cfrac{1}{4}\left[2-\prod_{n=0}^{\infty}\left(1-\cfrac{1}{2^{2^n}}\right)\right]$$ |
0.41245403364011 |
M_PROUHET_THUE_MORSE |
Golomb-Dickman constant |
$$λ=\int_0^1e^{Li\left(t\right)}dt=\int_0^{\infty}\cfrac{ρ\left(t\right)}{t+2}dt$$ |
0.62432998854355 |
M_GOLOMB_DICKMAN |
Lebesgue constant |
$$c=\lim_{n\rightarrow\infty}\left(L_n-\cfrac{4}{π^2}\ln\left(2n+1\right)\right)$$ |
0.98943127383115 |
M_LEBESGUE |
Feller-Tornier constant |
$$C_{FT}=\cfrac{1}{2}\prod_{p\ \text{prime}}\left(1-\cfrac{2}{p^2}\right)+\cfrac{1}{2}$$ |
0.66131704946962 |
M_FELLER_TORNIER |
Champernowne constant |
$$C_{10}=0.1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\cdots$$ |
0.12345678910111 |
M_CHAMPERNOWNE |
Salem constant |
$$σ_{10}=x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1$$ |
1.1762808182599 |
M_SALEM |
Lévy's constant |
$$β=\cfrac{π^2}{12\cdot\ln{2}}$$ |
1.1865691104156 |
M_LEVY |
Copeland-Erdős constant |
$$C_{CE}=0.2\ 3\ 5\ 7\ 11\ 13\ 17\ 19\ 23\ 29\ 31\ 37\cdots$$ |
0.23571113171923 |
M_COPELAND_ERDOS |
Mills' constant |
$$\left\lfloor A^{3^n}\right\rfloor$$ |
1.3063778838631 |
M_MILLS |
Gompertz constant |
$$δ=\int_0^{\infty}\cfrac{e^{-x}}{1+x}dx$$ |
0.59634736232319 |
M_GOMPERTZ |
Van der Pauw constant |
$$\cfrac{π}{\ln{2}}$$ |
4.5323601418272 |
M_VAN_DER_PAUW |
Magic angle |
$$θ_m=\tan^{-1}{\sqrt{2}}$$ |
0.95531661812451 |
M_MAGIC_ANGLE |
Artin's constant |
$$C_{Artin}=\prod_{p\ \text{prime}}\left(1-\cfrac{1}{p\left(p-1\right)}\right)$$ |
0.3739558136192 |
M_ARTIN |
Porter's constant |
$$C=\cfrac{6\ln 2}{π^2}\left(3\ln 2+4γ-\cfrac{24}{π^2}ζ'\left(2\right)-2\right)-\cfrac{1}{2}$$ |
1.467078079434 |
M_PORTER |
Lochs constant |
$$L=\cfrac{6\ln 2\ln 10}{π^2}$$ |
0.97027011439203 |
M_LOCHS |
Lieb's square ice constant |
$$\left(\cfrac{4}{3}\right)^{\cfrac{3}{2}}$$ |
1.539600717839 |
M_LIEB_SQUARE_ICE |
Niven's constant |
$$C=1+\sum_{n=2}^{\infty}\left(1-\cfrac{1}{ζ\left(n\right)}\right)$$ |
1.7052111401054 |
M_NIVEN |
Stephens' constant |
$$C_S=\prod_{p\ \text{prime}}\left(1-\cfrac{p}{p^3-1}\right)$$ |
0.57595996889295 |
M_STEPHENS |
Zero |
$$0$$ |
0 |
M_ZERO |
Negative one |
$$-1$$ |
-1 |
M_NEGATIVE_ONE |
Square Root of 2 |
$$\sqrt{2}$$ |
1.4142135623731 |
M_SQRT2 |
Square Root of 3 |
$$\sqrt{3}$$ |
1.7320508075689 |
M_SQRT3 |
Square Root of 5 |
$$\sqrt{5}$$ |
2.2360679774998 |
M_SQRT5 |
Cube Root of 2 |
$$\sqrt[3]{2}$$ |
1.2599210498949 |
M_CURT2 |
Cube Root of 3 |
$$\sqrt[3]{3}$$ |
1.4422495703074 |
M_CURT3 |
Twelfth Root of 2 |
$$\sqrt[12]{2}$$ |
1.0594630943593 |
M_TWRT2 |
Natural Log of 2 |
$$\ln(2)$$ |
0.69314718055995 |
M_LN2 |
Natural Log of 10 |
$$\ln(10)$$ |
2.302585092994 |
M_LN10 |
Natural Log of Pi |
$$\ln(π)$$ |
1.1447298858494 |
M_LNPI |
Base 10 Log of e |
$$\log10(e)$$ |
0.43429448190325 |
M_LOG10E |
Base 2 Log of e |
$$\log2(e)$$ |
1.442695040889 |
M_LOG2E |
Half of Pi |
$$π/2$$ |
1.5707963267949 |
M_PI_2 |
Quarter of Pi |
$$π/4$$ |
0.78539816339745 |
M_PI_4 |
Inverse of Pi |
$$1/π$$ |
0.31830988618379 |
M_1_PI |
Two over Pi |
$$2/π$$ |
0.63661977236758 |
M_2_PI |
Square Root of Pi |
$$\sqrt{π}$$ |
1.7724538509055 |
M_SQRTPI |
Two over Square Root of Pi |
$$2/\sqrt{π}$$ |
1.1283791670955 |
M_2_SQRTPI |
Inverse of Square Root of 2 |
$$1/\sqrt{2}$$ |
0.70710678118655 |
M_SQRT1_2 |