Menu

Hydrodynamic calculation Needle valve closing flow against the direction of movement of the piston

Needle valve closing flow against the direction of movement of the piston D Q max -F +F 0.912 D 0.975 D 0.4D L
Needle valve closing flow against the direction of movement of the piston
needle-valve-2 0.133 D - 4 d 1 0.183 D - 8 d 1 0.26 D - 12 d 1 0.35 D - 16 d 1 0.45 D - 20 d 1 0.56 D - 24 d 1 0.666 D - 28 d 1 0.773 D - 32 d 1 0.975 D d 1 =0.03 D
Needle

Values for calculation

$ D $ $ \mathrm{mm} $
$ Q_{max} $ $ \mathrm{m^3/s} $
$ H $ $ \mathrm{m} $
$ g $ $ \mathrm{m/s^2} $
$ T $ $ \mathrm{°C} $
$ ρ $ $ \mathrm{kg/m^3} $
$ P_{SV} $ $ \mathrm{Pa} $
$ ΔP $ $ \mathrm{m} $
$ h $ $ \mathrm{m} $
$ ρ_{air} $ $ \mathrm{kg/m^3} $
$ p_{air} $ $ \mathrm{Pa} $
$ t $ $ \mathrm{s} $
$ L $ $ \mathrm{m} $

Calculation

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Theoretical pressure in the valve at full opening

$$Δ_h=\cfrac{v_{max}^2}{2\cdot g}\cdot \left({\min\left(ζ\right)}+1\right)$$

Pressure parameter

$$p=\cfrac{Δ_h}{H}$$

$$0 < p \le 1$$

Effective closing time factor

$$c_{ef}=0.1/\max_{i=1}^{10}{\left(Q_p[i]-Q_p[i+1]\right)}$$

$$c_{ef}\le 1$$

Under-pressure behind the valve

$$P_{u}=\max\left(-\cfrac{L\cdot v_{max}}{g\cdot t\cdot c_{ef}}, -\cfrac{p_{air}}{ρ\cdot g}\right)$$

$ [-] $
Hydraulic profile of the needle valve

Stroke from open position
First stage of cavitation
Second stage of cavitation
Fully developed cavitation
$ s $ $ σ_1 $ $ σ_2 $ $ σ_{min} $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ σ_1\ [-] $
$ σ_2\ [-] $
$ σ_{min}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Stage of cavitation

Stroke from open position
Flow coefficient for $ σ_1 $
Flow coefficient for $ σ_2 $
Flow coefficient for $ σ_{min} $
$ s $ $ K_{Q-σ_1} $ $ K_{Q-σ_2} $ $ K_{Q-σ_{min}} $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_{Q-σ_1}\ [-] $
$ K_{Q-σ_2}\ [-] $
$ K_{Q-σ_{min}}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient for stages of cavitation

Stroke from open position
Coefficient of hydraulic force on a needle in the axis x for $ σ_1 $
Coefficient of hydraulic force on a needle in the axis x for $ σ_2 $
Coefficient of hydraulic force on a needle in the axis x for $ σ_{min} $
$ s $ $ K_{x-σ_1} $ $ K_{x-σ_2} $ $ K_{x-σ_{min}} $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_{x-σ_1}\ [-] $
$ K_{x-σ_2}\ [-] $
$ K_{x-σ_{min}}\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficient of hydraulic force on a needle in the axis x for stages of cavitation

Stroke from open position
Flow coefficient
Coefficient of hydraulic force on a needle in the axis x
$ s $ $ K_Q $ $ K_x $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_Q\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient

$\text{if }\ σ> σ_1$
$$K_Q=K_{Q-σ_1}$$
$\text{else if }\ σ> σ_2$
$$K_Q=K_{Q-σ_2}$$
$\text{else}$
$$K_Q=K_{Q-σ_{min}}$$

$ K_x\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficient of hydraulic force on a needle in the axis x

$\text{if }\ σ> σ_1$
$$K_x=K_{x-σ_1}$$
$\text{else if }\ σ> σ_2$
$$K_x=K_{x-σ_2}$$
$\text{else}$
$$K_x=K_{x-σ_{min}}$$
Stroke from open position
Loss coefficient
Reduced free flow area in the throttle control system
Relative flow
Flow of water in the pipeline
Water velocity in pipeline
$ s $ $ ζ $ $ f_r $ $ Q_p $ $ Q $ $ v $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{m^3/s} $ $ \mathrm{m/s} $
No data

$ ζ\ [-] $
No data
$ s\ [\mathrm{\%}] $
Loss coefficient

$$ζ=\cfrac{1-K_Q^2}{K_Q^2}$$

$ f_r\ [-] $
$ Q_p\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficients

$$f_r=\cfrac{K_Q}{K_{Qmax}}$$
$$Q_p=\cfrac{f_r}{\sqrt{p+f_r^2\cdot \left(1-p\right)}}$$

$ Q\ [\mathrm{m^3/s}] $
$ v\ [\mathrm{m/s}] $
No data
$ s\ [\mathrm{\%}] $
Flow and speed of water in the pipeline

$$Q=Q_p\cdot Q_{max}$$
$$v=Q_p\cdot v_{max}$$
Stroke from open position
Loss of pressure on the valve
Pressure on the valve
Cavitation number
Forces on the needle
$ s $ $ H_L $ $ H_v $ $ σ $ $ F_x $
$ \mathrm{\%} $ $ \mathrm{m} $ $ \mathrm{m} $ $ \mathrm{\ } $ $ \mathrm{kN} $
No data

$ H_L\ [\mathrm{m}] $
$ H_v\ [\mathrm{m}] $
No data
$ s\ [\mathrm{\%}] $
Loss of height on valve and pressure height on Needle valve

$$H_L=\cfrac{v^2}{2\cdot g}\cdot ζ$$
$$H_v=H_L+\cfrac{v^2}{2\cdot g}+\left(1-Q_p\right)\cdot\left(ΔP-P_{u}\right)$$

$ σ\ [-] $
No data
$ s\ [\mathrm{\%}] $
Cavitation number

$$σ=\cfrac{\cfrac{p_{air}-P_{SV}}{ρ\cdot g}+H-H_L}{H_v}$$

$ F_x\ [\mathrm{kN}] $
No data
$ s\ [\mathrm{\%}] $
Forces on the needle

$$F_x=\cfrac{π\cdot D}{4\cdot 10^9}\cdot ρ\cdot g\cdot H_v\cdot K_x$$