Menu

Effective closing time factor

Values for calculation

$ D $ $ \mathrm{mm} $
$ Q_{max} $ $ \mathrm{m^3/s} $
$ H $ $ \mathrm{m} $
$ g $ $ \mathrm{m/s^2} $
$ K_{Q-valve}[1] $
$ K_{Q-valve}[2] $
$ K_{Q-valve}[3] $
$ K_{Q-valve}[4] $
$ K_{Q-valve}[5] $
$ K_{Q-valve}[6] $
$ K_{Q-valve}[7] $
$ K_{Q-valve}[8] $
$ K_{Q-valve}[9] $
$ K_{Q-valve}[10] $

Calculation

Velocity in valve

$$v_{max}=\cfrac{4\cdot 10^6\cdot Q_{max}}{π\cdot D^2}$$

Theoretical pressure in the valve at full opening

$$Δ_h=\cfrac{v_{max}^2}{2\cdot g}\cdot \left({\min\left(ζ\right)}+1\right)$$

Pressure parameter

$$p=\cfrac{Δ_h}{H}$$

$$0 < p \le 1$$

Effective closing time factor

$$c_{ef}=0.1/\max_{i=1}^{10}{\left(Q_p[i]-Q_p[i+1]\right)}$$

$$c_{ef}\le 1$$
Stroke from open position
Flow coefficient
Loss coefficient
Reduced free flow area in the throttle control system
Relative flow
$ s $ $ K_Q $ $ ζ $ $ f_r $ $ Q_p $
$ \mathrm{\%} $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $ $ \mathrm{\ } $
No data

$ K_Q\ [-] $
No data
$ s\ [\mathrm{\%}] $
Flow coefficient

$ ζ\ [-] $
No data
$ s\ [\mathrm{\%}] $
Loss coefficient

$$ζ=\cfrac{1-K_Q^2}{K_Q^2}$$

$ f_r\ [-] $
$ Q_p\ [-] $
No data
$ s\ [\mathrm{\%}] $
Coefficients

$$f_r=\cfrac{K_Q}{K_{Qmax}}$$
$$Q_p=\cfrac{f_r}{\sqrt{p+f_r^2\cdot \left(1-p\right)}}$$