# Cone compression springs (given the deflection of spring)

## Values for calculation

## Calculation

### Shear admissible stress

### Force

### Spring stiffness

### Energy stored

### Shear stress

### Safety factor

**On this page**

This website uses Google Analytics to collect traffic data. By clicking the button, you agree to the collection of this data.

$$τ_{adm}=\cfrac{S_y}{\sqrt{3}}$$

$$F=\cfrac{f\cdot d^4\cdot G\cdot 10^3}{16\cdot n\cdot\left(\cfrac{D_1}{2}+\cfrac{D_0}{2}\right)\cdot\left(\left(\cfrac{D_1}{2}\right)^2+\left(\cfrac{D_0}{2}\right)^2\right)}$$

$$k=\cfrac{F}{f\cdot 10^{-3}}$$

$$E_p=\cfrac{F\cdot f\cdot 10^{-3}}{2}$$

$$τ_S=\cfrac{16\cdot F\cdot\cfrac{D_1}{2}}{π\cdot d^3}$$

$$τ_S\le τ_{adm}$$

$$S_F=\cfrac{τ_{adm}}{τ_S}$$