Menu

Key(s) for shaft hub connection

Key(s) for shaft hub connection D h D b h t
Key(s) for shaft hub connection
Key l b h r 1 r 1
Key

Values for calculation

$ M_T $ $ \mathrm{Nm} $
$ D $ $ \mathrm{mm} $
$ D_h $ $ \mathrm{mm} $
$ S_{y-shaft} $ $ \mathrm{MPa} $
$ S_{y-hub} $ $ \mathrm{MPa} $
$ S_{y-key} $ $ \mathrm{MPa} $
$ l $ $ \mathrm{mm} $
$ i $
$ C_c $
$ S_F $
$ M_B $ $ \mathrm{Nm} $
$ F_R $ $ \mathrm{kN} $
$ F_A $ $ \mathrm{kN} $
$ b $ $ \mathrm{mm} $
$ h $ $ \mathrm{mm} $
$ t $ $ \mathrm{mm} $
$ t_t $ $ \mathrm{mm} $
$ t_1 $ $ \mathrm{mm} $
$ t_{1t} $ $ \mathrm{mm} $
$ r_1 $ $ \mathrm{mm} $
$ r_2 $ $ \mathrm{mm} $
$ l_t $ $ \mathrm{mm} $

Calculation

Allowable axial stress the shaft

$$σ_{all-A-shaft}=\cfrac{0.45 \cdot S_{y-shaft}}{S_F}\cdot C_c$$

Allowable bending stress the shaft

$$σ_{all-B-shaft}=\cfrac{0.6 \cdot S_{y-shaft}}{S_F}\cdot C_c$$

Allowable shear stress the shaft

$$τ_{all-S-shaft}=\cfrac{0.4 \cdot S_{y-shaft}}{S_F}\cdot C_c$$

Allowable bearing stress the shaft

$$P_{all-B-shaft}=\cfrac{0.9 \cdot S_{y-shaft}}{S_F}\cdot C_c$$

Allowable bearing stress the hub

$$P_{all-B-hub}=\cfrac{0.9 \cdot S_{y-hub}}{S_F}\cdot C_c$$

Allowable combined stress the shaft

$$σ_{all-C-shaft}=\cfrac{S_{y-shaft}}{S_F}\cdot C_c$$

Allowable shear stress the hub

$$τ_{all-S-hub}=\cfrac{0.4 \cdot S_{y-hub}}{S_F}\cdot C_c$$

Allowable shear stress the key

$$τ_{all-S-key}=\cfrac{0.4 \cdot S_{y-key}}{S_F}\cdot C_c$$

Allowable bearing stress the key

$$P_{all-B-key}=\cfrac{0.9 \cdot S_{y-key}}{S_F}\cdot C_c$$

Coefficient $ B_T $

$$B_T=1.953+0.1434\cdot\left(\cfrac{0.1}{r_2/D}\right)-0.0021\cdot\left(\cfrac{0.1}{r_2/D}\right)^2$$

Torsion stress in the shaft

$$τ_{T-shaft}=\cfrac{16\cdot 10^3 \cdot M_T\cdot B_T}{π \cdot D^3}$$

$$τ_{T-shaft}\le τ_{all-S-shaft}$$

Shear stress key

$$τ_{S-key}=\cfrac{2\cdot M_T\cdot 10^3}{D\cdot i\cdot\left(\left(l-b-l_t\right)\cdot b+\cfrac{π\cdot b^2}{4}\right)}$$

$$τ_{S-key}\le τ_{all-S-key}$$

The height of the key in the shaft

$$h_s=t-\cfrac{D}{2}+\cfrac{D}{2}\cdot\cos\left(\sin^{-1}{\cfrac{b}{D}}\right)$$

Bearing stress in the key and shaft

$$P_{B-key-shaft}=\cfrac{2\cdot M_T\cdot 10^3}{D\cdot i\cdot\left(\left(l-b-l_t\right)\cdot\left(h_s-t_{1t}-\left(t+t_1-h\right)-r_1\right)\right)}$$

$$P_{B-key-shaft}\le \min\left(P_{all-B-key}, P_{all-B-shaft}\right)$$

The height of the key in the hub

$$h_h=t+t_1-h_s$$

Bearing stress in the key and hub

$$P_{B-key-hub}=\cfrac{2\cdot M_T\cdot 10^3}{D\cdot i\cdot\left(\left(l-b-l_t\right)\cdot\left(h_h-t_{1t}-\left(t+t_1-h\right)-r_1\right)\right)}$$

$$P_{B-key-hub}\le \min\left(P_{all-B-key}, P_{all-B-hub}\right)$$

Torsion stress in the hub

$$τ_{T-hub}=\cfrac{16\cdot 10^3 \cdot M_T \cdot B_T}{π\cdot\left(D_h^4-D^4\right)}\cdot D$$

$$τ_{T-hub}\le τ_{all-S-hub}$$

Coefficient $ B_B $

$$B_B=1.426+0.1643\cdot\left(\cfrac{0.1}{r_2/D}\right)-0.0019\cdot\left(\cfrac{0.1}{r_2/D}\right)^2$$

Bending stress in the shaft

$$σ_{B-shaft}=\cfrac{32\cdot 10^3 \cdot M_B \cdot B_B}{π \cdot D^3}$$

$$σ_{B-shaft}\le σ_{all-B-shaft}$$

Shear stress in the shaft

$$τ_{S-shaft}=\cfrac{10^3 \cdot F_R}{\cfrac{π \cdot D^2}{4}-b\cdot t\cdot i}$$

$$τ_{S-shaft}\le τ_{all-S-shaft}$$

Coefficient $ B_A $

$$B_A=1.6$$

Axial stress in the shaft

$$σ_{A-shaft}=\cfrac{4\cdot 10^3 \cdot F_A \cdot B_A}{π \cdot D^2}$$

$$σ_{A-shaft}\le σ_{all-A-shaft}$$

Combined stress in the shaft

$$σ_{tresca-shaft}=\sqrt{σ_{B-shaft}^2+σ_{A-shaft}^2+4\cdot\left(τ_{T-shaft}^2+τ_{S-shaft}^2\right)}$$

$$σ_{tresca-shaft}\le σ_{all-C-shaft}$$

Requirements

$$ \sqrt{\left(D+2\cdot t_1\right)^2+b^2}< D_h $$