Menu

Interference fit

Interference fit l D h D D h D D 0 D 0 = 0 Δ max Δ max
Interference fit

Values for calculation

$ M_T $ $ \mathrm{Nm} $
$ D $ $ \mathrm{mm} $
$ D_0 $ $ \mathrm{mm} $
$ D_h $ $ \mathrm{mm} $
$ l $ $ \mathrm{mm} $
$ μ $
$ S_{y-shaft} $ $ \mathrm{MPa} $
$ E_{shaft} $ $ \mathrm{MPa} $
$ ν_{shaft} $
$ S_{y-hub} $ $ \mathrm{MPa} $
$ E_{hub} $ $ \mathrm{MPa} $
$ ν_{hub} $
$ C_c $
$ S_F $
$ F_A $ $ \mathrm{kN} $
$ Δ_{max} $ $ \mathrm{mm} $

Calculation

Allowable combined stress the hub

$$σ_{all-C-hub}=\cfrac{S_{y-hub}}{S_F}\cdot C_c$$

Allowable combined stress the shaft

$$σ_{all-C-shaft}=\cfrac{S_{y-shaft}}{S_F}\cdot C_c$$

Dimensional characteristics of the connection on diameter $ D_0 $

$$C_{D_0}=\cfrac{D^2+D_0^2}{D^2-D_0^2}$$

Dimensional characteristics of the connection on diameter $ D $

$$C_{D}=\cfrac{D_h^2+D^2}{D_h^2-D^2}$$

Min. contact pressure

$$p_{min}=\left(\cfrac{2\cdot M_T\cdot 10^3}{π\cdot D^2\cdot l\cdot μ}+\cfrac{F_A\cdot 10^3}{π\cdot D\cdot l\cdot μ}\right)\cdot\cfrac{S_F}{C_c}$$

Max. contact pressure

$$p_{max}=\cfrac{Δ_{max}}{D\cdot\left(\cfrac{C_{D_0}-ν_{shaft}}{E_{shaft}}+\cfrac{C_{D}+ν_{hub}}{E_{hub}}\right)}$$

$$p_{max}\geq p_{min}$$

Min. Interference

$$Δ_{min}=p_{min}\cdot D\cdot\left(\cfrac{C_{D_0}-ν_{shaft}}{E_{shaft}}+\cfrac{C_{D}+ν_{hub}}{E_{hub}}\right)$$

Radial stress in the hub on diameter $ D $

$$σ_{R-hub-D}=-p_{max}$$

Tangential stress in the hub on diameter $ D $

$$σ_{T-hub-D}=p_{max}\cdot C_{D}$$

Torsion stress in the hub on diameter $ D $

$$τ_{T-hub-D}=\cfrac{10^3\cdot M_T}{\cfrac{π}{16}\cdot\cfrac{D_h^4-D^4}{D}}$$

Shear stress in the hub on diameter $ D $

$$τ_{S-hub-D}=\cfrac{10^3\cdot F_A}{π\cdot D\cdot l}$$

Combined stress in the hub on diameter $ D $

$$σ_{tresca-hub-D}=\sqrt{σ_{T-hub-D}^2+σ_{R-hub-D}^2-\left(σ_{T-hub-D}\cdot σ_{R-hub-D}\right)+4\cdot(τ_{T-hub-D}^2+τ_{S-hub-D}^2)}$$

$$σ_{tresca-hub-D}\le σ_{all-C-hub}$$

Radial stress in the shaft on diameter $ D $

$$σ_{R-shaft-D}=-p_{max}$$

Tangential stress in the shaft on diameter $ D $

$$σ_{T-shaft-D}=-p_{max}\cdot C_{D_0}$$

Torsion stress in the shaft on diameter $ D $

$$τ_{T-shaft-D}=\cfrac{10^3\cdot M_T}{\cfrac{π}{16}\cdot\cfrac{D^4-D_0^4}{D}}$$

Shear stress in the shaft on diameter $ D $

$$τ_{S-shaft-D}=τ_{S-hub-D}$$

Combined stress in the shaft on diameter $ D $

$$σ_{tresca-shaft-D}=\sqrt{σ_{T-shaft-D}^2+σ_{R-shaft-D}^2-\left(σ_{T-shaft-D}\cdot σ_{R-shaft-D}\right)+4\cdot(τ_{T-shaft-D}^2+τ_{S-shaft-D}^2)}$$

$$σ_{tresca-shaft-D}\le σ_{all-C-shaft}$$

Radial stress in the shaft on diameter $ D_0 $

$\text{if }\ D_0=0$
$$σ_{R-shaft-D_0}=-p_{max}$$
$\text{else}$
$$σ_{R-shaft-D_0}=0$$

Tangential stress in the shaft on diameter $ D_0 $

$\text{if }\ D_0=0$
$$σ_{T-shaft-D_0}=-p_{max}$$
$\text{else}$
$$σ_{T-shaft-D_0}=-p_{max}\cdot\left(C_{D_0}+1\right)$$

Torsion stress in the shaft on diameter $ D_0 $

$\text{if }\ D_0=0$
$$τ_{T-shaft-D_0}=0$$
$\text{else}$
$$τ_{T-shaft-D_0}=\cfrac{10^3\cdot M_T}{\cfrac{π}{16}\cdot\cfrac{D^4-D_0^4}{D_0}}$$

Combined stress in the shaft on diameter $ D_0 $

$$σ_{tresca-shaft-D_0}=\sqrt{σ_{T-shaft-D_0}^2+σ_{R-shaft-D_0}^2-\left(σ_{T-shaft-D_0}\cdot σ_{R-shaft-D_0}\right)+4\cdot τ_{T-shaft-D_0}^2}$$

$$σ_{tresca-shaft-D_0}\le σ_{all-C-shaft}$$