Menu

Trapezoidal thread

Trapezoidal thread R 1 R 2 h 3 z H 1 a c a c 30° P Nut thread Screw thread H 4 d 2 d 3 d D 1 D 2 D 4
Trapezoidal thread
Type of strut mounting F F F F β = 0.5 β = 0.7 β = 1 β = 2 A B C D
Type of strut mounting

Values for calculation

$ d $ $ \mathrm{mm} $
$ P $ $ \mathrm{mm} $
$ F $ $ \mathrm{N} $
$ μ $
$ M_T $ $ \mathrm{Nm} $
$ S_{y-screw} $ $ \mathrm{MPa} $
$ E $ $ \mathrm{MPa} $
$ S_{y-nut} $ $ \mathrm{MPa} $
$ l $ $ \mathrm{mm} $
$ n $ $ \mathrm{rpm} $
$ C_c $
$ S_F $
$ β $
$ S_{FB} $
$ L $ $ \mathrm{mm} $
$ e $ $ \mathrm{mm} $

Calculation

Clearance on the crest

$\text{if }\ P=1.5$
$$a_c=0.15$$
$\text{else if }\ P\le 5$
$$a_c=0.25$$
$\text{else if }\ P\le 12$
$$a_c=0.5$$
$\text{else}$
$$a_c=1$$

Height of the overlapping

$$H_1=0.5\cdot P$$

Height of internal threads

$$H_4=H_1+a_c$$

Height of external threads

$$h_3=H_1+a_c$$

Minor diameter for internal threads

$$D_1=d-P$$

Major diameter for internal threads

$$D_4=d+2\cdot a_c$$

Minor diameter for external threads

$$d_3=d-2\cdot h_3$$

Pitch diameter for external threads

$$d_2=d-0.5\cdot P$$

Dimension $ z $

$$z=0.25\cdot P$$

Dimension $ R_{1max} $

$$R_{1max}=0.5\cdot a_c$$

Dimension $ R_{2max} $

$$R_{2max}=a_c$$

Lifting torque

$$M_T=\cfrac{F\cdot d_2}{2\cdot 10^3}\cdot\left(\cfrac{P+π\cdot μ\cdot d_2\cdot\sec{30°/2}}{π\cdot d_2-μ\cdot P\cdot\sec{30°/2}}\right)$$

$$M_T\le M_T$$

Allowable combined stress the screw

$$σ_{all-C-screw}=\cfrac{S_{y-screw}}{S_F}\cdot C_c$$

Allowable bearing stress the screw

$$P_{all-B-screw}=\cfrac{0.9\cdot S_{y-screw}}{S_F}\cdot C_c\cdot C_t$$

Allowable bearing stress the nut

$$P_{all-B-nut}=\cfrac{0.9\cdot S_{y-nut}}{S_F}\cdot C_c\cdot C_t$$

Allowable axial stress the screw

$$σ_{all-A-screw}=\cfrac{0.45\cdot S_{y-screw}}{S_F}\cdot C_c$$

Allowable shear stress the screw

$$τ_{all-S-screw}=\cfrac{0.4\cdot S_{y-screw}}{S_F}\cdot C_c$$

Screw speed

$$v=\cfrac{n}{60000}\cdot π\cdot d_2$$

$$v\le 0.25$$

Power screw coefficient

$$C_t=2.7093\cdot v^2-1.5937\cdot v+0.25$$

Axial stress in the screw

$$σ_{A-screw}=\cfrac{F}{\cfrac{π}{4}\cdot\left(\cfrac{d_2+d_3}{2}\right)^2}$$

$$σ_{A-screw}\le σ_{all-A-screw}$$

Shear stress in the screw

$$τ_{S-screw}=\cfrac{M_T}{\cfrac{π}{16}\cdot\left(\cfrac{d_2+d_3}{2}\right)^3}$$

$$τ_{S-screw}\le τ_{all-S-screw}$$

Combined stress in the screw

$$σ_{tresca-screw}=\sqrt{σ_{A-screw}^2+4\cdot τ_{S-screw}^2}$$

$$σ_{tresca-screw}\le σ_{all-C-screw}$$

Bearing stress in the screw and nut

$$P_{B-screw-nut}=\cfrac{4\cdot F}{\cfrac{l}{P}\cdot π\cdot\left(d^2-D_1^2\right)}$$

$$P_{B-screw-nut}\le\min\left(P_{all-B-screw}, P_{all-B-nut}\right)$$

Profile area

$$S=\cfrac{π}{4}\cdot\left(\cfrac{d_2+d_3}{2}\right)^2$$

Second moment of area

$$I=\cfrac{π}{64}\cdot\left(\cfrac{d_2+d_3}{2}\right)^4$$

Extreme fiber distance

$$c=\cfrac{d_2+d_3}{4}$$

Gyration radius

$$i=\sqrt{\cfrac{I}{S}}$$

Slenderness ratio

$$λ=\cfrac{L\cdot β}{i}$$

Eccentricity parameter

$$η=\cfrac{e\cdot c}{i^2}$$

$$η\geq 0.25$$

Maximal (critical) force

$\text{if }\ λ>0.282\cdot\sqrt{\cfrac{E\cdot S}{F}}$
$$F_{max}=S_{y-screw}\cdot S/ \left[1+η\cdot\sec\left(\cfrac{λ}{2}\cdot\sqrt{\cfrac{\left|F_{max}\right|}{E\cdot S}}\right)\right]$$
$\text{else}$
$$F_{max}=S_{y-screw}\cdot S/ \left[1+η\right]$$

$$\cfrac{F_{max}}{S_{FB}}\cdot C_c\geq F$$