Menu

One V-notches in a member of rectangular section for elastic stress, in-plane bending

Owo V-notches in a member of rectangular section D r θ h
Owo V-notches in a member of rectangular section

Values for calculation

$ D $ $ \mathrm{mm} $
$ h $ $ \mathrm{mm} $
$ r $ $ \mathrm{mm} $
$ θ $ $ \mathrm{°} $

Calculation

Coefficient $ C_1 $

$\text{if }\ 0.1\le h/r\le 2.0$
$$C_1=0.850+2.628\cdot\sqrt{h/r}-0.413\cdot h/r$$
$\text{else}$
$$C_1=0.833+2.069\cdot\sqrt{h/r}-0.009\cdot h/r$$

Coefficient $ C_2 $

$\text{if }\ 0.1\le h/r\le 2.0$
$$C_2=-1.119-4.826\cdot\sqrt{h/r}+2.575\cdot h/r$$
$\text{else}$
$$C_2=2.732-4.157\cdot\sqrt{h/r}+0.176\cdot h/r$$

Coefficient $ C_3 $

$\text{if }\ 0.1\le h/r\le 2.0$
$$C_3=3.563-0.514\cdot\sqrt{h/r}-2.402\cdot h/r$$
$\text{else}$
$$C_3=-8.859+5.327\cdot\sqrt{h/r}-0.320\cdot h/r$$

Coefficient $ C_4 $

$\text{if }\ 0.1\le h/r\le 2.0$
$$C_4=-2.294+2.713\cdot\sqrt{h/r}+0.240\cdot h/r$$
$\text{else}$
$$C_4=6.294-3.239\cdot\sqrt{h/r}+0.154\cdot h/r$$

The elastic stress concentration factor for a U-notch

$$K_{tu}=C_1+C_2\cdot\left(\cfrac{2\cdot h}{D}\right)+C_3\cdot\left(\cfrac{2\cdot h}{D}\right)^2+C_4\cdot\left(\cfrac{2\cdot h}{D}\right)^3$$

The elastic stress concentration factor

$$K_t=\min\left\{1.11\cdot K_{tu}-\left[0.0275+0.1125\cdot\left(\cfrac{θ}{150}\right)^4\right]\cdot K_{tu}^2, K_{tu}\right\}$$

Requirements

$$ θ \le 150 $$