# Left end simply supported, right end fixed for intermediate externally created lateral displacement

## Values for calculation

$l$ $\mathrm{mm}$
$a$ $\mathrm{mm}$
$Δ_o$ $\mathrm{mm}$
$E$ $\mathrm{MPa}$
$I$ $\mathrm{mm^4}$
$x$ $\mathrm{mm}$

## Calculation

### Vertical end reactions $R_A$

$$R_A=\cfrac{3\cdot E\cdot I\cdot Δ_o}{l^3}$$

### Reaction end moment $M_A$

$$M_A=0$$

### Angular displacement $θ_A$

$$θ_A=\cfrac{-3\cdot Δ_o}{2\cdot l}$$

### Deflection $y_A$

$$y_A=0$$

### Vertical end reactions $R_B$

$$R_B=-R_A$$

### Reaction end moment $M_B$

$$M_B=\cfrac{3\cdot E\cdot I\cdot Δ_o}{l^2}$$

### Angular displacement $θ_B$

$$θ_B=0$$

### Deflection $y_B$

$$y_B=0$$

### Max. moment

$$M_{max}=M_B$$

### Max. angular displacement

$$θ_{max}=θ_A$$

### Max. deflection +

$$y_{max+}=\cfrac{Δ_o}{2\cdot l^3}\cdot\left(2\cdot l^3+a^3-3\cdot l^2\cdot a\right)$$

### Max. deflection -

$$y_{max-}=\cfrac{-Δ_o\cdot a}{2\cdot l^3}\cdot\left(3\cdot l^2-a^2\right)$$

### Transverse shear

$$V=R_A$$

### Bending moment

$$M=M_A+R_A\cdot x$$

### Slope

$$θ=θ_A+\cfrac{M_A\cdot x}{E\cdot I}+\cfrac{R_A\cdot x^2}{2\cdot E\cdot I}$$

### Deflection

$\text{if }\ x\le a$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}$$
$\text{else}$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}+Δ_o\cdot\left(x-a\right)$$