Menu

Outer edge simply supported, inner edge free

Annular plate with a uniform annular line load w at a radius ro b a Q b Q a M ra M rb w r o y b θ b θ a
Annular plate with a uniform annular line load $w$ at a radius $r_o$
Outer edge simply supported, inner edge free w r o
Outer edge simply supported, inner edge free

Values for calculation

$a$ $\mathrm{mm}$
$b$ $\mathrm{mm}$
$t$ $\mathrm{mm}$
$r_o$ $\mathrm{mm}$
$w$ $\mathrm{N/m}$
$E$ $\mathrm{MPa}$
$ν$
$r$ $\mathrm{mm}$

Calculation

Plate constant $ C_1 $

$$C_1=\cfrac{1+ν}{2}\cdot\cfrac{b}{a}\cdot\ln\left(\cfrac{a}{b}\right)+\cfrac{1-ν}{4}\cdot\left(\cfrac{a}{b}-\cfrac{b}{a}\right)$$

Plate constant $ C_4 $

$$C_4=\cfrac{1}{2}\cdot\left[\left(1+ν\right)\cdot\cfrac{b}{a}+\left(1-ν\right)\cdot\cfrac{a}{b}\right]$$

Plate constant $ C_7 $

$$C_7=\cfrac{1}{2}\cdot\left(1-ν^2\right)\cdot\left(\cfrac{a}{b}-\cfrac{b}{a}\right)$$

Function of the radial location $ F_1 $

$$F_1=\cfrac{1+ν}{2}\cdot\cfrac{b}{r}\cdot\ln\left(\cfrac{r}{b}\right)+\cfrac{1-ν}{4}\cdot\left(\cfrac{r}{b}-\cfrac{b}{r}\right)$$

Function of the radial location $ F_2 $

$$F_2=\cfrac{1}{4}\cdot\left[1-\left(\cfrac{b}{r}\right)^2\cdot\left(1+2\cdot\ln\left(\cfrac{r}{b}\right)\right)\right]$$

Function of the radial location $ F_3 $

$$F_3=\cfrac{b}{4\cdot r}\cdot\left\{\left[\left(\cfrac{b}{r}\right)^2+1\right]\cdot\ln\left(\cfrac{r}{b}\right)+\left(\cfrac{b}{r}\right)^2-1\right\}$$

Function of the radial location $ F_4 $

$$F_4=\cfrac{1}{2}\cdot\left[\left(1+ν\right)\cdot\cfrac{b}{r}+\left(1-ν\right)\cdot\cfrac{r}{b}\right]$$

Function of the radial location $ F_5 $

$$F_5=\cfrac{1}{2}\cdot\left[1-\left(\cfrac{b}{r}\right)^2\right]$$

Function of the radial location $ F_6 $

$$F_6=\cfrac{b}{4\cdot r}\cdot\left[\left(\cfrac{b}{r}\right)^2-1+2\cdot\ln\left(\cfrac{r}{b}\right)\right]$$

Function of the radial location $ F_7 $

$$F_7=\cfrac{1}{2}\cdot\left(1-ν^2\right)\cdot\left(\cfrac{r}{b}-\cfrac{b}{r}\right)$$

Function of the radial location $ F_8 $

$$F_8=\cfrac{1}{2}\cdot\left[1+ν+\left(1-ν\right)\cdot\left(\cfrac{b}{r}\right)^2\right]$$

Function of the radial location $ F_9 $

$$F_9=\cfrac{b}{r}\cdot\left\{\cfrac{1+ν}{2}\cdot\ln\left(\cfrac{r}{b}\right)+\cfrac{1-ν}{4}\cdot\left[1-\left(\cfrac{b}{r}\right)^2\right]\right\}$$

Function of the radial location $ G_3 $

if $r > r_o$$$G_3=\cfrac{r_o}{4\cdot r}\cdot\left\{\left[\left(\cfrac{r_o}{r}\right)^2+1\right]\cdot\ln\left(\cfrac{r}{r_o}\right)+\left(\cfrac{r_o}{r}\right)^2-1\right\}$$else$$G_3=0$$

Function of the radial location $ G_6 $

if $r > r_o$$$G_6=\cfrac{r_o}{4\cdot r}\cdot\left[\left(\cfrac{r_o}{r}\right)^2-1+2\cdot\ln\left(\cfrac{r}{r_o}\right)\right]$$else$$G_6=0$$

Function of the radial location $ G_9 $

if $r > r_o$$$G_9=\cfrac{r_o}{r}\cdot\left\{\cfrac{1+ν}{2}\cdot\ln\left(\cfrac{r}{r_o}\right)+\cfrac{1-ν}{4}\cdot\left[1-\left(\cfrac{r_o}{r}\right)^2\right]\right\}$$else$$G_9=0$$

Loading constant $ L_3 $

$$L_3=\cfrac{r_o}{4\cdot a}\cdot\left\{\left[\left(\cfrac{r_o}{a}\right)^2+1\right]\cdot\ln\left(\cfrac{a}{r_o}\right)+\left(\cfrac{r_o}{a}\right)^2-1\right\}$$

Loading constant $ L_6 $

$$L_6=\cfrac{r_o}{4\cdot a}\cdot\left[\left(\cfrac{r_o}{a}\right)^2-1+2\cdot\ln\left(\cfrac{a}{r_o}\right)\right]$$

Loading constant $ L_9 $

$$L_9=\cfrac{r_o}{a}\cdot\left\{\cfrac{1+ν}{2}\cdot\ln\left(\cfrac{a}{r_o}\right)+\cfrac{1-ν}{4}\cdot\left[1-\left(\cfrac{r_o}{a}\right)^2\right]\right\}$$

The plate constant

$$D=E\cdot t^3/\left(12\cdot\left(1-ν^2\right)\right)$$

Unit radial bending moment at the inner edge

$$M_{rb}=0$$

Unit shear force at the inner edge

$$Q_b=0$$

Vertical deflection of plate at the outer edge

$$y_a=0$$

Unit radial bending moment at the outer edge

$$M_{ra}=0$$

Vertical deflection of plate at the inner edge

$$y_b=\cfrac{-w\cdot a^3}{10^3\cdot D}\cdot\left(\cfrac{C_1\cdot L_9}{C_7}-L_3\right)$$

Radial slope of plate at the inner edge

$$θ_b=\cfrac{w\cdot a^2}{10^3\cdot D\cdot C_7}\cdot L_9$$

Radial slope of plate at the outer edge

$$θ_a=\cfrac{w\cdot a^2}{10^3\cdot D}\cdot\left(\cfrac{C_4\cdot L_9}{C_7}-L_6\right)$$

Unit shear force at the outer edge

$$Q_a=-w\cdot\cfrac{r_o}{a}$$

Vertical deflection of plate

$$y=y_b+θ_b\cdot r\cdot F_1+M_{rb}\cdot\cfrac{r^2}{D}\cdot F_2+Q_b\cdot\cfrac{r^3}{D}\cdot F_3-w\cdot\cfrac{r^3}{D}\cdot G_3$$

Radial slope of plate

$$θ=θ_b\cdot F_4+M_{rb}\cdot\cfrac{r}{D}\cdot F_5+Q_b\cdot\cfrac{r^2}{D}\cdot F_6-w\cdot\cfrac{r^2}{D}\cdot G_6$$

Unit radial bending moment

$$M_r=θ_b\cdot\cfrac{D}{r}\cdot F_7+M_{rb}\cdot F_8+Q_b\cdot r\cdot F_9-w\cdot r\cdot G_9$$

Unit tangential bending moment

$$M_t=\cfrac{θ\cdot D\cdot\left(1-ν^2\right)}{r}+ν\cdot M_r$$

Unit shear force

if $r > r_o$$$Q=Q_b\cdot\cfrac{b}{r}-w\cdot\cfrac{r_o}{r}$$else$$Q=Q_b\cdot\cfrac{b}{r}$$