# Left end simply supported, right end simply supported for intermediate externally created angular deformation

## Values for calculation

$l$ $\mathrm{mm}$
$a$ $\mathrm{mm}$
$θ_o$ $\mathrm{rad}$
$E$ $\mathrm{MPa}$
$I$ $\mathrm{mm^4}$
$x$ $\mathrm{mm}$

## Calculation

### Vertical end reactions $R_A$

$$R_A=0$$

### Reaction end moment $M_A$

$$M_A=0$$

### Angular displacement $θ_A$

$$θ_A=\cfrac{-θ_o}{l}\cdot\left(l-a\right)$$

### Deflection $y_A$

$$y_A=0$$

### Vertical end reactions $R_B$

$$R_B=0$$

### Reaction end moment $M_B$

$$M_B=0$$

### Angular displacement $θ_B$

$$θ_B=\cfrac{θ_o}{l}$$

### Deflection $y_B$

$$y_B=0$$

### Max. deflection

$$y_{max}=\cfrac{-θ_o\cdot a}{l}\cdot\left(l-a\right)$$

### Transverse shear

$$V=R_A$$

### Bending moment

$$M=M_A+R_A\cdot x$$

### Slope

$\text{if }\ x\le a$
$$θ=θ_A+\cfrac{M_A\cdot x}{E\cdot I}+\cfrac{R_A\cdot x^2}{2\cdot E\cdot I}$$
$\text{else}$
$$θ=θ_A+\cfrac{M_A\cdot x}{E\cdot I}+\cfrac{R_A\cdot x^2}{2\cdot E\cdot I}+θ_o\cdot\left(x-a\right)$$

### Deflection

$\text{if }\ x\le a$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}$$
$\text{else}$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}+θ_o\cdot\left(x-a\right)$$