Menu

T-section flange thickness uniform

T-section, flange thickness uniform a b c d D r
T-section, flange thickness uniform

Values for calculation

$ T $ $ \mathrm{Nm} $
$ a $ $ \mathrm{mm} $
$ b $ $ \mathrm{mm} $
$ c $ $ \mathrm{mm} $
$ d $ $ \mathrm{mm} $
$ r $ $ \mathrm{mm} $
$ φ $ $ \mathrm{rad} $
$ L $ $ \mathrm{mm} $
$ G $ $ \mathrm{MPa} $

Calculation

Profile area

$$A=a\cdot b+c\cdot d+2\cdot r^2-\cfrac{π\cdot r^2}{2}$$

Polar moment of inertia coefficient $ K_1 $

$$K_1=a\cdot b^3\cdot \left[\cfrac{1}{3}-0.21\cdot\cfrac{b}{a}\cdot\left(1-\cfrac{b^4}{12\cdot a^4}\right)\right]$$

Polar moment of inertia coefficient $ K_2 $

$$K_2=c\cdot d^3\cdot\left[\cfrac{1}{3}-0.105\cdot\cfrac{d}{c}\cdot\left(1-\cfrac{d^4}{192\cdot c^4}\right)\right]$$

Dimension $ t $

$\text{if }\ b< d$
$$t=b$$
$\text{else}$
$$t=d$$

Dimension $ t_1 $

$\text{if }\ b> d$
$$t_1=b$$
$\text{else}$
$$t_1=d$$

Coefficient $ α $

$$α=\cfrac{t}{t_1}\cdot\left(0.15+0.1\cdot\cfrac{r}{b}\right)$$

Diameter of largest inscribed circle

$$D=\cfrac{\left(b+r\right)^2+r\cdot d+d^2/4}{\left(2\cdot r+b\right)}$$

Coefficient $ C $

$$C=\cfrac{D}{1+\cfrac{π^2\cdot D^4}{16\cdot A^2}}\cdot\left[1+\left[0.118\cdot\ln{\left(1+\cfrac{D}{2\cdot r}\right)+0.238\cdot\cfrac{D}{2\cdot r}}\right]\cdot\tanh\left(\cfrac{2\cdot φ}{π}\right)\right]$$

Polar moment of inertia

$$K=K_1+K_2+α\cdot D^4$$

Angle of twist

$$θ=\cfrac{T\cdot 10^3\cdot L}{K\cdot G}$$

Torsion stress

$$τ_{max}=\cfrac{10^3\cdot T}{K}\cdot C$$

Requirements

$$ d<2\cdot\left(b+r\right) $$