# Eccentric hollow circular section

## Values for calculation

## Calculation

### Coefficient $ λ $

### Coefficient $ n $

### Coefficient $ C $

### Coefficient $ F $

### Polar moment of inertia

### Angle of twist

### Torsion stress

**On this page**

This website uses Google Analytics to collect traffic data. By clicking the button, you agree to the collection of this data.

$$λ=\cfrac{e}{D}$$

$$n=\cfrac{d}{D}$$

$$C=1+\cfrac{16\cdot n^2}{\left(1-n^2\right)\cdot\left(1-n^4\right)}\cdot λ^2+\cfrac{384\cdot n^4}{\left(1-n^2\right)^2\cdot\left(1-n^4\right)^4}\cdot λ^4$$

$$F=1+\cfrac{4\cdot n^2}{1-n^2}\cdot λ+\cfrac{32\cdot n^2}{\left(1-n^2\right)\cdot\left(1-n^4\right)}\cdot λ^2+\cfrac{48\cdot n^2\cdot\left(1+2\cdot n^2+3\cdot n^4+2\cdot n^6\right)}{\left(1-n^2\right)\cdot\left(1-n^4\right)\cdot\left(1-n^6\right)}\cdot λ^3+\cfrac{64\cdot n^2\cdot\left(2+12\cdot n^2+19\cdot n^4+28\cdot n^6+18\cdot n^8+14\cdot n^{10}+3\cdot n^{12}\right)}{\left(1-n^2\right)\cdot\left(1-n^4\right)\cdot\left(1-n^6\right)\cdot\left(1-n^8\right)}\cdotλ^4$$

$$K=\cfrac{π\cdot\left(D^4-d^4\right)}{32\cdot C}$$

$$θ=\cfrac{T\cdot 10^3\cdot L}{K\cdot G}$$

$$τ_{max}=\cfrac{16\cdot{10}^3\cdot T\cdot D\cdot F}{π\cdot \left(D^4-d^4\right)}$$