Menu

Left end guided, right end simply supported for intermediate externally created lateral displacement

Intermediate externally created lateral displacement a y A R A M A R B M B l θ B θ A Δ o
Intermediate externally created lateral displacement
Left end guided, right end simply supported for intermediate externally created lateral displacement Δ o a
Left end guided, right end simply supported for intermediate externally created lateral displacement

Values for calculation

$ l $ $ \mathrm{mm} $
$ a $ $ \mathrm{mm} $
$ Δ_o $ $ \mathrm{mm} $
$ E $ $ \mathrm{MPa} $
$ I $ $ \mathrm{mm^4} $
$ x $ $ \mathrm{mm} $

Calculation

Vertical end reactions $ R_A $

$$R_A=0$$

Reaction end moment $ M_A $

$$M_A=0$$

Angular displacement $ θ_A $

$$θ_A=0$$

Deflection $ y_A $

$$y_A=-Δ_o$$

Vertical end reactions $ R_B $

$$R_B=0$$

Reaction end moment $ M_B $

$$M_B=0$$

Angular displacement $ θ_B $

$$θ_B=0$$

Deflection $ y_B $

$$y_B=0$$

Max. deflection

$$y_{max}=y_A$$

Transverse shear

$$V=R_A$$

Bending moment

$$M=M_A+R_A\cdot x$$

Slope

$$θ=θ_A+\cfrac{M_A\cdot x}{E\cdot I}+\cfrac{R_A\cdot x^2}{2\cdot E\cdot I}$$

Deflection

$\text{if }\ x\le a$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}$$
$\text{else}$
$$y=y_A+θ_A\cdot x+\cfrac{M_A\cdot x^2}{2\cdot E\cdot I}+\cfrac{R_A\cdot x^3}{6\cdot E\cdot I}+Δ_o\cdot\left(x-a\right)$$