# Thin notched plate in transverse bending, $t/h$ large

## Values for calculation

$M$ $\mathrm{Nm}$
$r$ $\mathrm{mm}$
$t$ $\mathrm{mm}$
$H$ $\mathrm{mm}$
$h$ $\mathrm{mm}$

## Calculation

### Coefficient $C_1$

$$C_1=1.041+0.839\cdot\sqrt{t/r}+0.014\cdot t/r$$

### Coefficient $C_2$

$$C_2=-1.239-1.663\cdot\sqrt{t/r}+0.118\cdot t/r$$

### Coefficient $C_3$

$$C_3=3.370-0.758\cdot\sqrt{t/r}+0.434\cdot t/r$$

### Coefficient $C_4$

$$C_4=-2.162+1.582\cdot\sqrt{t/r}-0.606\cdot t/r$$

### Stress concentration factor with the nominal stress based on net area

$$K_{tn}=C_1+C_2\cdot\left(\cfrac{2\cdot t}{H}\right)+C_3\cdot\left(\cfrac{2\cdot t}{H}\right)^2+C_4\cdot\left(\cfrac{2\cdot t}{H}\right)^3$$

### Nominal or reference normal stress

$$σ_{nom}=\cfrac{6\cdot M\cdot 10^3}{h\cdot\left(H-2\cdot t\right)^2}$$

### Maximum normal stress

$$σ_{max}=K_{tn}\cdot σ_{nom}$$

### Normal stress

$$σ=\cfrac{6\cdot M\cdot 10^3}{H^2\cdot h}$$

### Stress concentration factor with the nominal stress based on gross area

$$K_{tg}=\cfrac{σ_{max}}{σ}$$