Tension of a finite-width element having an eccentrically located circular hole

Values for calculation

$σ$ $\mathrm{MPa}$
$H$ $\mathrm{mm}$
$d$ $\mathrm{mm}$
$c$ $\mathrm{mm}$

Calculation

Dimension $e$

$$e=H-c$$

$$0\le c/e\le 1$$

Coefficient $C_1$

$$C_1=2.9969-0.0090\cdot\left(\cfrac{c}{e}\right)+0.01338\cdot\left(\cfrac{c}{e}\right)^2$$

Coefficient $C_2$

$$C_2=0.1217+0.5180\cdot\left(\cfrac{c}{e}\right)-0.5297\cdot\left(\cfrac{c}{e}\right)^2$$

Coefficient $C_3$

$$C_3=0.5565+0.7215\cdot\left(\cfrac{c}{e}\right)+0.6153\cdot\left(\cfrac{c}{e}\right)^2$$

Coefficient $C_4$

$$C_4=4.082+6.0146\cdot\left(\cfrac{c}{e}\right)-3.9815\cdot\left(\cfrac{c}{e}\right)^2$$

Stress concentration factor with the nominal stress based on gross area

$$K_{tg}=C_1+C_2\cdot\left(\cfrac{d}{2\cdot c}\right)+C_3\cdot\left(\cfrac{d}{2\cdot c}\right)^2+C_4\cdot\left(\cfrac{d}{2\cdot c}\right)^3$$

Nominal or reference normal stress

$$σ_{nom}=\cfrac{σ\cdot\sqrt{1-\left(\cfrac{d}{2\cdot c}\right)^2}}{1-\left(\cfrac{d}{2\cdot c}\right)}\cdot\cfrac{1-\left(c/H\right)}{1-\left(c/H\right)\cdot\left[2-\sqrt{1-\left(\cfrac{d}{2\cdot c}\right)^2}\right]}$$

Stress concentration factor with the nominal stress based on net area

$$K_{tn}=\cfrac{σ_{max}}{σ_{nom}}$$

Maximum normal stress

$$σ_{max}=K_{tg}\cdot σ$$